mirror of https://github.com/hpcaitech/ColossalAI
[pipelinable]use pipelinable context to initialize non-pipeline model (#816)
* [CLI] add CLI launcher
* Revert "[CLI] add CLI launcher"
This reverts commit df7e6506d4
.
* [pipeline]add module lazy init feature to support large model initization.
* [pipeline]add to_layer_list and partition method to support arbitrary non-pp model
* refactor the module structure
* polish
* [pipelinable]add unit test for pipelinable
* polish
* polish
* Fix CodeFactor issues.
pull/843/head^2
parent
ea0a2ed25f
commit
35ea6e1023
|
@ -12,17 +12,6 @@ class ColoInitContext(InsertPostInitMethodToModuleSubClasses):
|
|||
super().__init__()
|
||||
self._lazy_memory_allocate = lazy_memory_allocate
|
||||
|
||||
def _pre_context_exec(self):
|
||||
"""
|
||||
The Callback function when entering the context
|
||||
"""
|
||||
pass
|
||||
|
||||
def _post_context_exec(self):
|
||||
"""The callback function when exiting context.
|
||||
"""
|
||||
pass
|
||||
|
||||
def _post_init_method(self, module: torch.nn.Module):
|
||||
"""
|
||||
The function to call at the end of the constructor of each module.
|
||||
|
|
|
@ -0,0 +1,211 @@
|
|||
import torch
|
||||
import functools
|
||||
from colossalai.utils.model.utils import _substitute_init_recursively, InsertPostInitMethodToModuleSubClasses, call_to_str
|
||||
from colossalai.builder.pipeline import partition_uniform, partition_balanced
|
||||
from colossalai.core import global_context as gpc
|
||||
|
||||
|
||||
class PipelinableContext(InsertPostInitMethodToModuleSubClasses):
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self._layer_spec_dict = {}
|
||||
self._root_children = None
|
||||
self._model = None
|
||||
self._layer_spec_list = []
|
||||
self._func_dict = {}
|
||||
self._policy = "balanced"
|
||||
|
||||
@property
|
||||
def policy(self):
|
||||
return self._policy
|
||||
|
||||
@property
|
||||
def layers_count(self):
|
||||
return len(self._layer_spec_list)
|
||||
|
||||
@property
|
||||
def funcs_count(self):
|
||||
return len(self._func_dict)
|
||||
|
||||
def _pre_context_exec(self):
|
||||
"""
|
||||
The Callback function when entering the context
|
||||
"""
|
||||
|
||||
# reserve rng states
|
||||
self.cpu_rng_state = torch.get_rng_state()
|
||||
self.cuda_rng_state = torch.cuda.get_rng_state()
|
||||
|
||||
def _post_context_exec(self):
|
||||
"""
|
||||
The callback function when exiting context.
|
||||
"""
|
||||
|
||||
# reset rng states
|
||||
torch.set_rng_state(self.cpu_rng_state)
|
||||
torch.cuda.set_rng_state(self.cuda_rng_state)
|
||||
|
||||
def _post_init_method(self, module: torch.nn.Module, *args, **kwargs):
|
||||
"""
|
||||
The function to call at the end of the constructor of each module.
|
||||
NOTE() The module may be passed to this function multiple times.
|
||||
"""
|
||||
module_id = id(module)
|
||||
modified_args = []
|
||||
for obj in args:
|
||||
if issubclass(obj.__class__, torch.nn.modules.module.Module):
|
||||
obj = self._layer_spec_dict[id(obj)]
|
||||
modified_args.append(obj)
|
||||
# (lyl)TODO: analyse kwargs as well
|
||||
modified_args = tuple(modified_args)
|
||||
self._root_children = list(module.children())
|
||||
self._model = module
|
||||
layer_spec = LayerSpec(module.__class__, *modified_args, **kwargs)
|
||||
layer_spec.set_children(module.children())
|
||||
self._layer_spec_dict[module_id] = layer_spec
|
||||
for param in module.parameters(recurse=False):
|
||||
param.data = torch.rand(1, 1)
|
||||
|
||||
def to_layer_list(self, exec_seq=None):
|
||||
"""
|
||||
Create a layer spec list and func list with execution sequence given by user.
|
||||
If exec_seq is None, we will take the module initizing order as execution order.
|
||||
"""
|
||||
if exec_seq is None:
|
||||
#if user do not provide the model executing sequence, we use the initialization order as the executing order.
|
||||
for child in self._root_children:
|
||||
layer_spec = self._layer_spec_dict[id(child)]
|
||||
if layer_spec.typename in (torch.nn.modules.container.ModuleList,
|
||||
torch.nn.modules.container.Sequential):
|
||||
for child_in_container in layer_spec.children:
|
||||
self._layer_spec_list.append(self._layer_spec_dict[id(child_in_container)])
|
||||
|
||||
else:
|
||||
self._layer_spec_list.append(layer_spec)
|
||||
|
||||
else:
|
||||
func_key = "first"
|
||||
for index, element in enumerate(exec_seq):
|
||||
if isinstance(element, str):
|
||||
module = dict(self._model.named_modules())[element]
|
||||
layer_spec = self._layer_spec_dict[id(module)]
|
||||
func_key = layer_spec
|
||||
self._layer_spec_list.append(layer_spec)
|
||||
else:
|
||||
if func_key not in self._func_dict:
|
||||
self._func_dict[func_key] = []
|
||||
self._func_dict[func_key].append(element)
|
||||
|
||||
def partition(self, num_chunks, pipeline_size, rank):
|
||||
"""
|
||||
Partitioned model will be built respect to partion policy.
|
||||
The real module instance will be built in this method.
|
||||
"""
|
||||
if isinstance(self._policy, str):
|
||||
if self._policy == "uniform":
|
||||
parts = partition_uniform(len(self._layer_spec_list), pipeline_size, num_chunks)[rank]
|
||||
elif self._policy == "balanced":
|
||||
param_counts = []
|
||||
for layer_spec in self._layer_spec_list:
|
||||
param_counts.append(layer_spec.count_params())
|
||||
parts = partition_balanced(param_counts, pipeline_size, num_chunks)[rank]
|
||||
else:
|
||||
raise ValueError("A string partition policy should be one of ['uniform', 'balanced'].")
|
||||
elif isinstance(self._policy, dict):
|
||||
parts = self._policy[rank]
|
||||
else:
|
||||
raise ValueError("A partition policy should be either a string or a dictionary.")
|
||||
|
||||
layers_to_build = []
|
||||
for start, end in parts:
|
||||
layers_to_build += self._layer_spec_list[start:end]
|
||||
func_dict_in_partition = {}
|
||||
module_list_in_partition = []
|
||||
if rank == 0 and "first" in self._func_dict:
|
||||
func_dict_in_partition["first"] = self._func_dict["first"]
|
||||
for layer in layers_to_build:
|
||||
module = layer.build()
|
||||
module_list_in_partition.append(module)
|
||||
if layer in self._func_dict:
|
||||
func_dict_in_partition[id(module)] = self._func_dict[layer]
|
||||
module_list_in_partition = torch.nn.ModuleList(module_list_in_partition)
|
||||
pipeline_model = PipelinableModel(module_list_in_partition, func_dict_in_partition)
|
||||
|
||||
return pipeline_model
|
||||
|
||||
def load_policy(self, policy):
|
||||
self._policy = policy
|
||||
|
||||
|
||||
class PipelinableModel(torch.nn.Module):
|
||||
|
||||
def __init__(self, module_list, func_dict):
|
||||
super().__init__()
|
||||
self._module_list = module_list
|
||||
self._func_dict = func_dict
|
||||
|
||||
def forward(self, input_tensor):
|
||||
if "first" in self._func_dict:
|
||||
funcs = self._func_dict["first"]
|
||||
if isinstance(funcs, list):
|
||||
for f in funcs:
|
||||
input_tensor = f(input_tensor)
|
||||
else:
|
||||
input_tensor = funcs(input_tensor)
|
||||
|
||||
for module in self._module_list:
|
||||
input_tensor = module(input_tensor)
|
||||
if id(module) in self._func_dict:
|
||||
funcs = self._func_dict[id(module)]
|
||||
if isinstance(funcs, list):
|
||||
for f in funcs:
|
||||
input_tensor = f(input_tensor)
|
||||
else:
|
||||
input_tensor = funcs(input_tensor)
|
||||
|
||||
return input_tensor
|
||||
|
||||
|
||||
class LayerSpec:
|
||||
|
||||
def __init__(self, typename, *module_args, **module_kwargs):
|
||||
self.typename = typename
|
||||
self.module_args = module_args
|
||||
self.module_kwargs = module_kwargs
|
||||
self.children = None
|
||||
self._param_count = 0
|
||||
|
||||
if not issubclass(typename, torch.nn.Module):
|
||||
raise RuntimeError('LayerSpec only supports torch.nn.Module types.')
|
||||
|
||||
def __repr__(self):
|
||||
return call_to_str(self.typename.__name__, self.module_args, self.module_kwargs)
|
||||
|
||||
@property
|
||||
def param_count(self):
|
||||
return self._param_count
|
||||
|
||||
def build(self):
|
||||
"""Build the stored specification."""
|
||||
|
||||
recovered_args = []
|
||||
for obj in self.module_args:
|
||||
if isinstance(obj, LayerSpec):
|
||||
obj = obj.build()
|
||||
recovered_args.append(obj)
|
||||
recovered_args = tuple(recovered_args)
|
||||
return self.typename(*recovered_args, **self.module_kwargs)
|
||||
|
||||
def set_children(self, children):
|
||||
self.children = children
|
||||
|
||||
def count_params(self):
|
||||
self._param_count = 0
|
||||
layer = self.build()
|
||||
for param in layer.parameters():
|
||||
self._param_count += param.numel()
|
||||
return self._param_count
|
||||
|
||||
def reset_param_count(self):
|
||||
self._param_count = 0
|
|
@ -9,6 +9,28 @@ def _substitute_init_recursively(cls, func):
|
|||
func(subcls)
|
||||
|
||||
|
||||
def call_to_str(base, *args, **kwargs):
|
||||
"""Construct a string representation of a call.
|
||||
|
||||
Args:
|
||||
base (str): name of the call
|
||||
args (tuple, optional): args to ``base``
|
||||
kwargs (dict, optional): kwargs supplied to ``base``
|
||||
|
||||
Returns:
|
||||
str: A string representation of base(*args, **kwargs)
|
||||
"""
|
||||
name = f'{base}('
|
||||
if args:
|
||||
name += ', '.join(repr(arg) for arg in args)
|
||||
if kwargs:
|
||||
name += ', '
|
||||
if kwargs:
|
||||
name += ', '.join(f'{key}={repr(arg)}' for key, arg in kwargs.items())
|
||||
name += ')'
|
||||
return name
|
||||
|
||||
|
||||
class InsertPostInitMethodToModuleSubClasses(object):
|
||||
|
||||
def __init__(self, default_dtype: Optional[torch.dtype] = None):
|
||||
|
@ -28,7 +50,7 @@ class InsertPostInitMethodToModuleSubClasses(object):
|
|||
@functools.wraps(f)
|
||||
def wrapper(module: torch.nn.Module, *args, **kwargs):
|
||||
f(module, *args, **kwargs)
|
||||
self._post_init_method(module)
|
||||
self._post_init_method(module, *args, **kwargs)
|
||||
|
||||
return wrapper
|
||||
|
||||
|
@ -71,7 +93,7 @@ class InsertPostInitMethodToModuleSubClasses(object):
|
|||
return False
|
||||
|
||||
# To be implemented by inheriting classes
|
||||
def _post_init_method(self, module):
|
||||
def _post_init_method(self, module, *args, **kwargs):
|
||||
pass
|
||||
|
||||
def _pre_context_exec(self):
|
||||
|
|
|
@ -0,0 +1,64 @@
|
|||
import os.path as osp
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
import torch.multiprocessing as mp
|
||||
|
||||
from colossalai.utils.model.pipelinable import PipelinableContext
|
||||
|
||||
from functools import partial
|
||||
from colossalai.utils import free_port
|
||||
from colossalai.testing import rerun_on_exception
|
||||
|
||||
NUM_CHUNKS = 1
|
||||
PIPELINE_SIZE = 2
|
||||
|
||||
|
||||
class MLP(torch.nn.Module):
|
||||
|
||||
def __init__(self, dim: int = 256):
|
||||
super().__init__()
|
||||
intermediate_dim = dim * 4
|
||||
self.dense_1 = torch.nn.Linear(dim, intermediate_dim)
|
||||
self.activation = torch.nn.GELU()
|
||||
self.dense_2 = torch.nn.Linear(intermediate_dim, dim)
|
||||
self.dropout = torch.nn.Dropout(0.1)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.dense_1(x)
|
||||
x = self.activation(x)
|
||||
x = self.dense_2(x)
|
||||
x = self.dropout(x)
|
||||
return x
|
||||
|
||||
|
||||
def run_pipelinable(rank):
|
||||
pipelinable = PipelinableContext()
|
||||
with pipelinable:
|
||||
model = MLP()
|
||||
|
||||
assert pipelinable.policy == "balanced"
|
||||
pipelinable.load_policy("uniform")
|
||||
assert pipelinable.policy == "uniform"
|
||||
pipelinable.to_layer_list()
|
||||
|
||||
assert pipelinable.layers_count == len(list(model.children()))
|
||||
|
||||
pipeline_model_part_0 = pipelinable.partition(NUM_CHUNKS, PIPELINE_SIZE, 0)
|
||||
assert isinstance(pipeline_model_part_0, torch.nn.Module)
|
||||
pipeline_model_part_1 = pipelinable.partition(NUM_CHUNKS, PIPELINE_SIZE, 1)
|
||||
assert isinstance(pipeline_model_part_1, torch.nn.Module)
|
||||
|
||||
layers_count_in_part_0 = len(list(pipeline_model_part_0._module_list))
|
||||
layers_count_in_part_1 = len(list(pipeline_model_part_1._module_list))
|
||||
|
||||
assert layers_count_in_part_0 + layers_count_in_part_1 == pipelinable.layers_count
|
||||
|
||||
|
||||
@rerun_on_exception(exception_type=mp.ProcessRaisedException, pattern=".*Address already in use.*")
|
||||
def test_pipelinable():
|
||||
mp.spawn(run_pipelinable, nprocs=1)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_pipelinable()
|
Loading…
Reference in New Issue