mirror of https://github.com/hpcaitech/ColossalAI
[example] simplify opt example (#2344)
parent
7080a8edb0
commit
35e22be2f6
|
@ -5,7 +5,6 @@ from time import time
|
|||
import psutil
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from model_zoo import model_builder
|
||||
from packaging import version
|
||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||
from utils import get_data, get_tflops
|
||||
|
@ -16,6 +15,7 @@ from colossalai.nn.parallel import ZeroDDP
|
|||
from colossalai.tensor import ColoParameter, ComputePattern, ComputeSpec, ProcessGroup, ReplicaSpec, ShardSpec
|
||||
from colossalai.utils import get_current_device
|
||||
from colossalai.utils.model.colo_init_context import ColoInitContext
|
||||
from model_zoo import model_builder
|
||||
|
||||
CAI_VERSION = colossalai.__version__
|
||||
|
||||
|
|
|
@ -29,24 +29,5 @@ We adapt the OPT training code to ColossalAI by leveraging Gemini and ZeRO DDP.
|
|||
You can launch training by using the following bash script
|
||||
|
||||
```bash
|
||||
bash ./run_clm.sh <batch-size-per-gpu> <mem-cap> <model> <gpu-num>
|
||||
bash ./run_gemini.sh
|
||||
```
|
||||
|
||||
- batch-size-per-gpu: number of samples fed to each GPU, default is 16
|
||||
- mem-cap: limit memory usage within a value in GB, default is 0 (no limit)
|
||||
- model: the size of the OPT model, default is `6.7b`. Acceptable values include `125m`, `350m`, `1.3b`, `2.7b`, `6.7`, `13b`, `30b`, `66b`. For `175b`, you can request
|
||||
the pretrained weights from [OPT weight downloading page](https://github.com/facebookresearch/metaseq/tree/main/projects/OPT).
|
||||
- gpu-num: the number of GPUs to use, default is 1.
|
||||
|
||||
## Remarkable Performance
|
||||
On a single GPU, Colossal-AI’s automatic strategy provides remarkable performance gains from the ZeRO Offloading strategy by Microsoft DeepSpeed.
|
||||
Users can experience up to a 40% speedup, at a variety of model scales. However, when using a traditional deep learning training framework like PyTorch, a single GPU can no longer support the training of models at such a scale.
|
||||
|
||||
<p align="center">
|
||||
<img src="https://raw.githubusercontent.com/hpcaitech/public_assets/main/colossalai/img/OPT.png" width=1000/>
|
||||
</p>
|
||||
|
||||
Adopting the distributed training strategy with 8 GPUs is as simple as adding a `-nprocs 8` to the training command of Colossal-AI!
|
||||
|
||||
More details about behind the scenes can be found on the corresponding [blog](https://medium.com/@yangyou_berkeley/colossal-ai-seamlessly-accelerates-large-models-at-low-costs-with-hugging-face-4d1a887e500d),
|
||||
and a detailed tutorial will be added in [Documentation](https://www.colossalai.org/docs/get_started/installation) very soon.
|
||||
|
|
|
@ -14,7 +14,7 @@ do
|
|||
pkill -9 torchrun
|
||||
pkill -9 python
|
||||
|
||||
bash ./run_clm.sh $BS $MEMCAP $MODEL $GPUNUM
|
||||
env BS=$BS MEM_CAP=$MEMCAP MODEL=$MODEL GPUNUM=$GPUNUM bash ./run_gemini.sh
|
||||
done
|
||||
done
|
||||
done
|
||||
|
|
|
@ -1,6 +0,0 @@
|
|||
from colossalai.zero.shard_utils import TensorShardStrategy
|
||||
|
||||
zero = dict(model_config=dict(shard_strategy=TensorShardStrategy(),
|
||||
tensor_placement_policy="auto",
|
||||
reuse_fp16_shard=True),
|
||||
optimizer_config=dict(gpu_margin_mem_ratio=0.8, initial_scale=16384))
|
|
@ -1,32 +0,0 @@
|
|||
import torch.distributed as dist
|
||||
|
||||
from colossalai.context import ParallelMode
|
||||
from colossalai.core import global_context as gpc
|
||||
|
||||
|
||||
class barrier_context():
|
||||
"""
|
||||
This context manager is used to allow one process to execute while blocking all
|
||||
other processes in the same process group. This is often useful when downloading is required
|
||||
as we only want to download in one process to prevent file corruption.
|
||||
Args:
|
||||
executor_rank (int): the process rank to execute without blocking, all other processes will be blocked
|
||||
parallel_mode (ParallelMode): the parallel mode corresponding to a process group
|
||||
Usage:
|
||||
with barrier_context():
|
||||
dataset = CIFAR10(root='./data', download=True)
|
||||
"""
|
||||
|
||||
def __init__(self, executor_rank: int = 0, parallel_mode: ParallelMode = ParallelMode.GLOBAL):
|
||||
# the class name is lowercase by convention
|
||||
current_rank = gpc.get_local_rank(parallel_mode=parallel_mode)
|
||||
self.should_block = current_rank != executor_rank
|
||||
self.group = gpc.get_group(parallel_mode=parallel_mode)
|
||||
|
||||
def __enter__(self):
|
||||
if self.should_block:
|
||||
dist.barrier(group=self.group)
|
||||
|
||||
def __exit__(self, exc_type, exc_value, exc_traceback):
|
||||
if not self.should_block:
|
||||
dist.barrier(group=self.group)
|
|
@ -1,6 +0,0 @@
|
|||
colossalai
|
||||
torch >= 1.8.1
|
||||
datasets >= 1.8.0
|
||||
sentencepiece != 0.1.92
|
||||
protobuf
|
||||
accelerate == 0.13.2
|
|
@ -1,596 +0,0 @@
|
|||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
Fine-tuning the library models for causal language modeling (GPT, GPT-2, CTRL, ...)
|
||||
on a text file or a dataset without using HuggingFace Trainer.
|
||||
|
||||
Here is the full list of checkpoints on the hub that can be fine-tuned by this script:
|
||||
https://huggingface.co/models?filter=text-generation
|
||||
"""
|
||||
# You can also adapt this script on your own causal language modeling task. Pointers for this are left as comments.
|
||||
|
||||
import math
|
||||
import os
|
||||
import time
|
||||
from itertools import chain
|
||||
|
||||
import datasets
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
from accelerate.utils import set_seed
|
||||
from context import barrier_context
|
||||
from datasets import load_dataset
|
||||
from packaging import version
|
||||
from torch.utils.data import DataLoader
|
||||
from tqdm.auto import tqdm
|
||||
|
||||
import colossalai
|
||||
import transformers
|
||||
from colossalai.context import ParallelMode
|
||||
from colossalai.core import global_context as gpc
|
||||
from colossalai.logging import disable_existing_loggers, get_dist_logger
|
||||
from colossalai.nn.optimizer import HybridAdam
|
||||
from colossalai.nn.optimizer.zero_optimizer import ZeroOptimizer
|
||||
from colossalai.nn.parallel import ZeroDDP
|
||||
from colossalai.tensor import ProcessGroup
|
||||
from colossalai.utils import get_current_device, get_dataloader
|
||||
from colossalai.utils.model.colo_init_context import ColoInitContext
|
||||
from transformers import (
|
||||
CONFIG_MAPPING,
|
||||
MODEL_MAPPING,
|
||||
AutoConfig,
|
||||
AutoTokenizer,
|
||||
GPT2Tokenizer,
|
||||
OPTForCausalLM,
|
||||
SchedulerType,
|
||||
default_data_collator,
|
||||
get_scheduler,
|
||||
)
|
||||
from transformers.utils.versions import require_version
|
||||
|
||||
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt")
|
||||
|
||||
MODEL_CONFIG_CLASSES = list(MODEL_MAPPING.keys())
|
||||
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
|
||||
|
||||
|
||||
def get_time_stamp():
|
||||
torch.cuda.synchronize()
|
||||
return time.time()
|
||||
|
||||
|
||||
def parse_args():
|
||||
parser = colossalai.get_default_parser()
|
||||
parser.add_argument(
|
||||
"--dataset_name",
|
||||
type=str,
|
||||
default=None,
|
||||
help="The name of the dataset to use (via the datasets library).",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--dataset_config_name",
|
||||
type=str,
|
||||
default=None,
|
||||
help="The configuration name of the dataset to use (via the datasets library).",
|
||||
)
|
||||
parser.add_argument("--train_file",
|
||||
type=str,
|
||||
default=None,
|
||||
help="A csv or a json file containing the training data.")
|
||||
parser.add_argument("--validation_file",
|
||||
type=str,
|
||||
default=None,
|
||||
help="A csv or a json file containing the validation data.")
|
||||
parser.add_argument(
|
||||
"--validation_split_percentage",
|
||||
default=5,
|
||||
help="The percentage of the train set used as validation set in case there's no validation split",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--model_name_or_path",
|
||||
type=str,
|
||||
help="Path to pretrained model or model identifier from huggingface.co/models.",
|
||||
required=True,
|
||||
)
|
||||
parser.add_argument(
|
||||
"--config_name",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Pretrained config name or path if not the same as model_name",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--tokenizer_name",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Pretrained tokenizer name or path if not the same as model_name",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--use_slow_tokenizer",
|
||||
action="store_true",
|
||||
help="If passed, will use a slow tokenizer (not backed by the 🤗 Tokenizers library).",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--per_device_train_batch_size",
|
||||
type=int,
|
||||
default=8,
|
||||
help="Batch size (per device) for the training dataloader.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--per_device_eval_batch_size",
|
||||
type=int,
|
||||
default=8,
|
||||
help="Batch size (per device) for the evaluation dataloader.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--learning_rate",
|
||||
type=float,
|
||||
default=5e-5,
|
||||
help="Initial learning rate (after the potential warmup period) to use.",
|
||||
)
|
||||
parser.add_argument("--weight_decay", type=float, default=0.0, help="Weight decay to use.")
|
||||
parser.add_argument("--num_train_epochs", type=int, default=3, help="Total number of training epochs to perform.")
|
||||
parser.add_argument(
|
||||
"--max_train_steps",
|
||||
type=int,
|
||||
default=None,
|
||||
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--gradient_accumulation_steps",
|
||||
type=int,
|
||||
default=1,
|
||||
help="Number of updates steps to accumulate before performing a backward/update pass.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--lr_scheduler_type",
|
||||
type=SchedulerType,
|
||||
default="linear",
|
||||
help="The scheduler type to use.",
|
||||
choices=["linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup"],
|
||||
)
|
||||
parser.add_argument("--num_warmup_steps",
|
||||
type=int,
|
||||
default=0,
|
||||
help="Number of steps for the warmup in the lr scheduler.")
|
||||
parser.add_argument("--output_dir", type=str, default=None, help="Where to store the final model.")
|
||||
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
|
||||
parser.add_argument(
|
||||
"--model_type",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Model type to use if training from scratch.",
|
||||
choices=MODEL_TYPES,
|
||||
)
|
||||
parser.add_argument(
|
||||
"--block_size",
|
||||
type=int,
|
||||
default=None,
|
||||
help=("Optional input sequence length after tokenization. The training dataset will be truncated in block of"
|
||||
" this size for training. Default to the model max input length for single sentence inputs (take into"
|
||||
" account special tokens)."),
|
||||
)
|
||||
parser.add_argument(
|
||||
"--preprocessing_num_workers",
|
||||
type=int,
|
||||
default=None,
|
||||
help="The number of processes to use for the preprocessing.",
|
||||
)
|
||||
parser.add_argument("--overwrite_cache",
|
||||
type=bool,
|
||||
default=False,
|
||||
help="Overwrite the cached training and evaluation sets")
|
||||
parser.add_argument("--no_keep_linebreaks",
|
||||
action="store_true",
|
||||
help="Do not keep line breaks when using TXT files.")
|
||||
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
|
||||
parser.add_argument("--hub_model_id",
|
||||
type=str,
|
||||
help="The name of the repository to keep in sync with the local `output_dir`.")
|
||||
parser.add_argument("--hub_token", type=str, help="The token to use to push to the Model Hub.")
|
||||
parser.add_argument(
|
||||
"--checkpointing_steps",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--resume_from_checkpoint",
|
||||
type=str,
|
||||
default=None,
|
||||
help="If the training should continue from a checkpoint folder.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--with_tracking",
|
||||
action="store_true",
|
||||
help="Whether to enable experiment trackers for logging.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--report_to",
|
||||
type=str,
|
||||
default="all",
|
||||
help=('The integration to report the results and logs to. Supported platforms are `"tensorboard"`,'
|
||||
' `"wandb"` and `"comet_ml"`. Use `"all"` (default) to report to all integrations.'
|
||||
"Only applicable when `--with_tracking` is passed."),
|
||||
)
|
||||
|
||||
parser.add_argument("--mem_cap", type=int, default=0, help="use mem cap")
|
||||
parser.add_argument("--init_in_cpu", action='store_true', default=False, help="init training model in cpu")
|
||||
args = parser.parse_args()
|
||||
|
||||
# Sanity checks
|
||||
if args.dataset_name is None and args.train_file is None and args.validation_file is None:
|
||||
raise ValueError("Need either a dataset name or a training/validation file.")
|
||||
else:
|
||||
if args.train_file is not None:
|
||||
extension = args.train_file.split(".")[-1]
|
||||
assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, json or txt file."
|
||||
if args.validation_file is not None:
|
||||
extension = args.validation_file.split(".")[-1]
|
||||
assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, json or txt file."
|
||||
|
||||
if args.push_to_hub:
|
||||
assert args.output_dir is not None, "Need an `output_dir` to create a repo when `--push_to_hub` is passed."
|
||||
|
||||
return args
|
||||
|
||||
|
||||
def colo_memory_cap(size_in_GB):
|
||||
from colossalai.utils import colo_device_memory_capacity, colo_set_process_memory_fraction, get_current_device
|
||||
cuda_capacity = colo_device_memory_capacity(get_current_device())
|
||||
if size_in_GB * (1024**3) < cuda_capacity:
|
||||
colo_set_process_memory_fraction(size_in_GB * (1024**3) / cuda_capacity)
|
||||
print("Using {} GB of GPU memory".format(size_in_GB))
|
||||
|
||||
|
||||
def main():
|
||||
args = parse_args()
|
||||
disable_existing_loggers()
|
||||
colossalai.launch_from_torch(config=dict())
|
||||
logger = get_dist_logger()
|
||||
is_main_process = dist.get_rank() == 0
|
||||
|
||||
if is_main_process:
|
||||
datasets.utils.logging.set_verbosity_warning()
|
||||
transformers.utils.logging.set_verbosity_info()
|
||||
else:
|
||||
datasets.utils.logging.set_verbosity_error()
|
||||
transformers.utils.logging.set_verbosity_error()
|
||||
|
||||
if args.mem_cap > 0:
|
||||
colo_memory_cap(args.mem_cap)
|
||||
|
||||
# If passed along, set the training seed now.
|
||||
if args.seed is not None:
|
||||
set_seed(args.seed)
|
||||
logger.info(f"Rank {dist.get_rank()}: random seed is set to {args.seed}")
|
||||
|
||||
# Handle the repository creation
|
||||
with barrier_context():
|
||||
if args.output_dir is not None:
|
||||
os.makedirs(args.output_dir, exist_ok=True)
|
||||
|
||||
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
|
||||
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
|
||||
# (the dataset will be downloaded automatically from the datasets Hub).
|
||||
#
|
||||
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
|
||||
# 'text' is found. You can easily tweak this behavior (see below).
|
||||
#
|
||||
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
|
||||
# download the dataset.
|
||||
logger.info("Start preparing dataset", ranks=[0])
|
||||
if args.dataset_name is not None:
|
||||
# Downloading and loading a dataset from the hub.
|
||||
raw_datasets = load_dataset(args.dataset_name, args.dataset_config_name)
|
||||
if "validation" not in raw_datasets.keys():
|
||||
raw_datasets["validation"] = load_dataset(
|
||||
args.dataset_name,
|
||||
args.dataset_config_name,
|
||||
split=f"train[:{args.validation_split_percentage}%]",
|
||||
)
|
||||
raw_datasets["train"] = load_dataset(
|
||||
args.dataset_name,
|
||||
args.dataset_config_name,
|
||||
split=f"train[{args.validation_split_percentage}%:]",
|
||||
)
|
||||
else:
|
||||
data_files = {}
|
||||
dataset_args = {}
|
||||
if args.train_file is not None:
|
||||
data_files["train"] = args.train_file
|
||||
if args.validation_file is not None:
|
||||
data_files["validation"] = args.validation_file
|
||||
extension = args.train_file.split(".")[-1]
|
||||
if extension == "txt":
|
||||
extension = "text"
|
||||
dataset_args["keep_linebreaks"] = not args.no_keep_linebreaks
|
||||
raw_datasets = load_dataset(extension, data_files=data_files, **dataset_args)
|
||||
# If no validation data is there, validation_split_percentage will be used to divide the dataset.
|
||||
if "validation" not in raw_datasets.keys():
|
||||
raw_datasets["validation"] = load_dataset(
|
||||
extension,
|
||||
data_files=data_files,
|
||||
split=f"train[:{args.validation_split_percentage}%]",
|
||||
**dataset_args,
|
||||
)
|
||||
raw_datasets["train"] = load_dataset(
|
||||
extension,
|
||||
data_files=data_files,
|
||||
split=f"train[{args.validation_split_percentage}%:]",
|
||||
**dataset_args,
|
||||
)
|
||||
logger.info("Dataset is prepared", ranks=[0])
|
||||
|
||||
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
|
||||
# https://huggingface.co/docs/datasets/loading_datasets.html.
|
||||
|
||||
# Load pretrained model and tokenizer
|
||||
#
|
||||
# In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
|
||||
# download model & vocab.
|
||||
if args.config_name:
|
||||
config = AutoConfig.from_pretrained(args.config_name)
|
||||
elif args.model_name_or_path:
|
||||
config = AutoConfig.from_pretrained(args.model_name_or_path)
|
||||
else:
|
||||
config = CONFIG_MAPPING[args.model_type]()
|
||||
logger.warning("You are instantiating a new config instance from scratch.")
|
||||
logger.info("Model config has been created", ranks=[0])
|
||||
|
||||
if args.model_name_or_path == 'facebook/opt-13b':
|
||||
tokenizer = GPT2Tokenizer.from_pretrained(args.model_name_or_path)
|
||||
else:
|
||||
print(f'load model from {args.model_name_or_path}')
|
||||
tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path, use_fast=not args.use_slow_tokenizer)
|
||||
logger.info(f"{tokenizer.__class__.__name__} has been created", ranks=[0])
|
||||
|
||||
if args.init_in_cpu:
|
||||
init_dev = torch.device('cpu')
|
||||
else:
|
||||
init_dev = get_current_device()
|
||||
|
||||
# build model
|
||||
if args.model_name_or_path is None or args.model_name_or_path == 'facebook/opt-13b':
|
||||
# currently, there has a bug in pretrained opt-13b
|
||||
# we can not import it until huggingface fix it
|
||||
logger.info("Train a new model from scratch", ranks=[0])
|
||||
with ColoInitContext(device=init_dev):
|
||||
model = OPTForCausalLM(config)
|
||||
else:
|
||||
logger.info("Finetune a pre-trained model", ranks=[0])
|
||||
with ColoInitContext(device=init_dev):
|
||||
model = OPTForCausalLM.from_pretrained(args.model_name_or_path,
|
||||
from_tf=bool(".ckpt" in args.model_name_or_path),
|
||||
config=config,
|
||||
local_files_only=False)
|
||||
|
||||
# enable graident checkpointing
|
||||
model.gradient_checkpointing_enable()
|
||||
|
||||
PLACEMENT_POLICY = 'auto'
|
||||
cai_version = colossalai.__version__
|
||||
logger.info(f'using Colossal-AI version {cai_version}')
|
||||
if version.parse(cai_version) > version.parse("0.1.10"):
|
||||
from colossalai.nn.parallel import GeminiDDP
|
||||
model = GeminiDDP(model, device=get_current_device(), placement_policy=PLACEMENT_POLICY, pin_memory=True)
|
||||
elif version.parse(cai_version) <= version.parse("0.1.10") and version.parse(cai_version) >= version.parse("0.1.9"):
|
||||
from colossalai.gemini import ChunkManager, GeminiManager
|
||||
pg = ProcessGroup()
|
||||
chunk_size = ChunkManager.search_chunk_size(model, 64 * 1024**2, 32)
|
||||
chunk_manager = ChunkManager(chunk_size,
|
||||
pg,
|
||||
enable_distributed_storage=True,
|
||||
init_device=GeminiManager.get_default_device(PLACEMENT_POLICY))
|
||||
gemini_manager = GeminiManager(PLACEMENT_POLICY, chunk_manager)
|
||||
model = ZeroDDP(model, gemini_manager)
|
||||
|
||||
logger.info(f'{model.__class__.__name__} has been created', ranks=[0])
|
||||
|
||||
# Preprocessing the datasets.
|
||||
# First we tokenize all the texts.
|
||||
column_names = raw_datasets["train"].column_names
|
||||
text_column_name = "text" if "text" in column_names else column_names[0]
|
||||
|
||||
def tokenize_function(examples):
|
||||
return tokenizer(examples[text_column_name])
|
||||
|
||||
with barrier_context(executor_rank=0, parallel_mode=ParallelMode.DATA):
|
||||
tokenized_datasets = raw_datasets.map(
|
||||
tokenize_function,
|
||||
batched=True,
|
||||
num_proc=args.preprocessing_num_workers,
|
||||
remove_columns=column_names,
|
||||
load_from_cache_file=not args.overwrite_cache,
|
||||
desc="Running tokenizer on dataset",
|
||||
)
|
||||
|
||||
if args.block_size is None:
|
||||
block_size = tokenizer.model_max_length
|
||||
if block_size > 1024:
|
||||
logger.warning(
|
||||
f"The tokenizer picked seems to have a very large `model_max_length` ({tokenizer.model_max_length}). "
|
||||
"Picking 1024 instead. You can change that default value by passing --block_size xxx.")
|
||||
block_size = 1024
|
||||
else:
|
||||
if args.block_size > tokenizer.model_max_length:
|
||||
logger.warning(f"The block_size passed ({args.block_size}) is larger than the maximum length for the model"
|
||||
f"({tokenizer.model_max_length}). Using block_size={tokenizer.model_max_length}.")
|
||||
block_size = min(args.block_size, tokenizer.model_max_length)
|
||||
|
||||
# Main data processing function that will concatenate all texts from our dataset and generate chunks of block_size.
|
||||
def group_texts(examples):
|
||||
# Concatenate all texts.
|
||||
concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()}
|
||||
total_length = len(concatenated_examples[list(examples.keys())[0]])
|
||||
# We drop the small remainder, we could add padding if the model supported it instead of this drop, you can
|
||||
# customize this part to your needs.
|
||||
if total_length >= block_size:
|
||||
total_length = (total_length // block_size) * block_size
|
||||
# Split by chunks of max_len.
|
||||
result = {
|
||||
k: [t[i:i + block_size] for i in range(0, total_length, block_size)
|
||||
] for k, t in concatenated_examples.items()
|
||||
}
|
||||
result["labels"] = result["input_ids"].copy()
|
||||
return result
|
||||
|
||||
# Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a remainder
|
||||
# for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value might be slower
|
||||
# to preprocess.
|
||||
#
|
||||
# To speed up this part, we use multiprocessing. See the documentation of the map method for more information:
|
||||
# https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.map
|
||||
|
||||
with barrier_context(executor_rank=0, parallel_mode=ParallelMode.DATA):
|
||||
lm_datasets = tokenized_datasets.map(
|
||||
group_texts,
|
||||
batched=True,
|
||||
num_proc=args.preprocessing_num_workers,
|
||||
load_from_cache_file=not args.overwrite_cache,
|
||||
desc=f"Grouping texts in chunks of {block_size}",
|
||||
)
|
||||
|
||||
train_dataset = lm_datasets["train"]
|
||||
eval_dataset = lm_datasets["validation"]
|
||||
|
||||
# Log a few random samples from the training set:
|
||||
# for index in random.sample(range(len(train_dataset)), 3):
|
||||
# logger.info(f"Sample {index} of the training set: {train_dataset[index]}.")
|
||||
|
||||
# DataLoaders creation:
|
||||
train_dataloader = get_dataloader(train_dataset,
|
||||
shuffle=True,
|
||||
add_sampler=True,
|
||||
collate_fn=default_data_collator,
|
||||
batch_size=args.per_device_train_batch_size)
|
||||
eval_dataloader = DataLoader(eval_dataset,
|
||||
collate_fn=default_data_collator,
|
||||
batch_size=args.per_device_eval_batch_size)
|
||||
logger.info("Dataloaders have been created", ranks=[0])
|
||||
|
||||
# Optimizer
|
||||
# Split weights in two groups, one with weight decay and the other not.
|
||||
no_decay = ["bias", "LayerNorm.weight"]
|
||||
optimizer_grouped_parameters = [
|
||||
{
|
||||
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
|
||||
"weight_decay": args.weight_decay,
|
||||
},
|
||||
{
|
||||
"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)],
|
||||
"weight_decay": 0.0,
|
||||
},
|
||||
]
|
||||
|
||||
optimizer = HybridAdam(optimizer_grouped_parameters, lr=args.learning_rate)
|
||||
optimizer = ZeroOptimizer(optimizer, model, initial_scale=2**14)
|
||||
|
||||
# Scheduler and math around the number of training steps.
|
||||
overrode_max_train_steps = False
|
||||
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
|
||||
if args.max_train_steps is None:
|
||||
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
|
||||
overrode_max_train_steps = True
|
||||
|
||||
lr_scheduler = get_scheduler(
|
||||
name=args.lr_scheduler_type,
|
||||
optimizer=optimizer,
|
||||
num_warmup_steps=args.num_warmup_steps,
|
||||
num_training_steps=args.max_train_steps,
|
||||
)
|
||||
|
||||
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
|
||||
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
|
||||
if overrode_max_train_steps:
|
||||
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
|
||||
# Afterwards we recalculate our number of training epochs
|
||||
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
|
||||
|
||||
# Train!
|
||||
total_batch_size = args.per_device_train_batch_size * gpc.get_world_size(ParallelMode.DATA)
|
||||
|
||||
logger.info("***** Running training *****", ranks=[0])
|
||||
logger.info(f" Num examples = {len(train_dataset)}", ranks=[0])
|
||||
logger.info(f" Num Epochs = {args.num_train_epochs}", ranks=[0])
|
||||
logger.info(f" Instantaneous batch size per device = {args.per_device_train_batch_size}", ranks=[0])
|
||||
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}", ranks=[0])
|
||||
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}", ranks=[0])
|
||||
logger.info(f" Total optimization steps = {args.max_train_steps}", ranks=[0])
|
||||
|
||||
# Only show the progress bar once on each machine.
|
||||
progress_bar = tqdm(range(args.max_train_steps), disable=not is_main_process)
|
||||
completed_steps = 0
|
||||
starting_epoch = 0
|
||||
global_step = 0
|
||||
|
||||
for epoch in range(starting_epoch, args.num_train_epochs):
|
||||
|
||||
if completed_steps >= args.max_train_steps:
|
||||
break
|
||||
|
||||
model.train()
|
||||
for step, batch in enumerate(train_dataloader):
|
||||
batch = {k: v.cuda() for k, v in batch.items()}
|
||||
outputs = model(**batch)
|
||||
loss = outputs['loss']
|
||||
optimizer.backward(loss)
|
||||
|
||||
if step % args.gradient_accumulation_steps == 0 or step == len(train_dataloader) - 1:
|
||||
optimizer.step()
|
||||
lr_scheduler.step()
|
||||
optimizer.zero_grad()
|
||||
progress_bar.update(1)
|
||||
completed_steps += 1
|
||||
|
||||
global_step += 1
|
||||
logger.info("Global step {} finished".format(global_step + 1), ranks=[0])
|
||||
|
||||
if completed_steps >= args.max_train_steps:
|
||||
break
|
||||
|
||||
model.eval()
|
||||
losses = []
|
||||
for step, batch in enumerate(eval_dataloader):
|
||||
with torch.no_grad():
|
||||
batch = {k: v.cuda() for k, v in batch.items()}
|
||||
outputs = model(**batch)
|
||||
|
||||
loss = outputs['loss'].unsqueeze(0)
|
||||
losses.append(loss)
|
||||
|
||||
losses = torch.cat(losses)
|
||||
losses = losses[:len(eval_dataset)]
|
||||
try:
|
||||
eval_loss = torch.mean(losses)
|
||||
perplexity = math.exp(eval_loss)
|
||||
except OverflowError:
|
||||
perplexity = float("inf")
|
||||
|
||||
logger.info(f"Epoch {epoch}: perplexity: {perplexity} eval_loss: {eval_loss}", ranks=[0])
|
||||
|
||||
if args.output_dir is not None:
|
||||
model_state = model.state_dict()
|
||||
if is_main_process:
|
||||
torch.save(model_state, args.output_dir + '/epoch_{}_model.pth'.format(completed_steps))
|
||||
dist.barrier()
|
||||
# load_state = torch.load(args.output_dir + '/epoch_{}_model.pth'.format(completed_steps))
|
||||
# model.load_state_dict(load_state, strict=False)
|
||||
|
||||
logger.info("Training finished", ranks=[0])
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
|
@ -1,22 +0,0 @@
|
|||
set -x
|
||||
export BS=${1:-16}
|
||||
export MEMCAP=${2:-0}
|
||||
export MODEL=${3:-"125m"}
|
||||
export GPUNUM=${4:-1}
|
||||
|
||||
# make directory for logs
|
||||
mkdir -p ./logs
|
||||
|
||||
export MODLE_PATH="facebook/opt-${MODEL}"
|
||||
|
||||
# HF_DATASETS_OFFLINE=1 TRANSFORMERS_OFFLINE=1
|
||||
torchrun \
|
||||
--nproc_per_node ${GPUNUM} \
|
||||
--master_port 19198 \
|
||||
run_clm.py \
|
||||
--dataset_name wikitext \
|
||||
--dataset_config_name wikitext-2-raw-v1 \
|
||||
--output_dir $PWD \
|
||||
--mem_cap ${MEMCAP} \
|
||||
--model_name_or_path ${MODLE_PATH} \
|
||||
--per_device_train_batch_size ${BS} 2>&1 | tee ./logs/colo_${MODEL}_bs_${BS}_cap_${MEMCAP}_gpu_${GPUNUM}.log
|
|
@ -0,0 +1,20 @@
|
|||
set -x
|
||||
export BS=${BS:-16}
|
||||
export MEMCAP=${MEMCAP:-0}
|
||||
# Acceptable values include `125m`, `350m`, `1.3b`, `2.7b`, `6.7`, `13b`, `30b`, `66b`. For `175b`
|
||||
export MODEL=${MODEL:-"125m"}
|
||||
export GPUNUM=${GPUNUM:-1}
|
||||
|
||||
# make directory for logs
|
||||
mkdir -p ./logs
|
||||
|
||||
export MODLE_PATH="facebook/opt-${MODEL}"
|
||||
|
||||
# HF_DATASETS_OFFLINE=1 TRANSFORMERS_OFFLINE=1
|
||||
torchrun \
|
||||
--nproc_per_node ${GPUNUM} \
|
||||
--master_port 19198 \
|
||||
train_gemini_opt.py \
|
||||
--mem_cap ${MEMCAP} \
|
||||
--model_name_or_path ${MODLE_PATH} \
|
||||
--batch_size ${BS} 2>&1 | tee ./logs/colo_${MODEL}_bs_${BS}_cap_${MEMCAP}_gpu_${GPUNUM}.log
|
|
@ -0,0 +1,211 @@
|
|||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
Fine-tuning the library models for causal language modeling (GPT, GPT-2, CTRL, ...)
|
||||
on a text file or a dataset without using HuggingFace Trainer.
|
||||
|
||||
Here is the full list of checkpoints on the hub that can be fine-tuned by this script:
|
||||
https://huggingface.co/models?filter=text-generation
|
||||
"""
|
||||
# You can also adapt this script on your own causal language modeling task. Pointers for this are left as comments.
|
||||
|
||||
import time
|
||||
from functools import partial
|
||||
|
||||
import datasets
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
import transformers
|
||||
from transformers import CONFIG_MAPPING, MODEL_MAPPING, AutoConfig, OPTForCausalLM
|
||||
from transformers.utils.versions import require_version
|
||||
|
||||
import colossalai
|
||||
from colossalai.logging import disable_existing_loggers, get_dist_logger
|
||||
from colossalai.nn.optimizer.gemini_optimizer import GeminiAdamOptimizer
|
||||
from colossalai.nn.parallel import GeminiDDP
|
||||
from colossalai.utils import get_current_device
|
||||
from colossalai.utils.model.colo_init_context import ColoInitContext
|
||||
|
||||
|
||||
def get_data(batch_size, seq_len, vocab_size):
|
||||
input_ids = torch.randint(0, vocab_size, (batch_size, seq_len), device=torch.cuda.current_device())
|
||||
attention_mask = torch.ones_like(input_ids)
|
||||
return input_ids, attention_mask
|
||||
|
||||
|
||||
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt")
|
||||
|
||||
MODEL_CONFIG_CLASSES = list(MODEL_MAPPING.keys())
|
||||
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
|
||||
|
||||
|
||||
def get_time_stamp():
|
||||
torch.cuda.synchronize()
|
||||
return time.time()
|
||||
|
||||
|
||||
def get_tflops(model_numel, batch_size, seq_len, step_time):
|
||||
return model_numel * batch_size * seq_len * 8 / 1e12 / (step_time + 1e-12)
|
||||
|
||||
|
||||
def parse_args():
|
||||
parser = colossalai.get_default_parser()
|
||||
parser.add_argument(
|
||||
"--model_name_or_path",
|
||||
type=str,
|
||||
help="Path to pretrained model or model identifier from huggingface.co/models.",
|
||||
required=True,
|
||||
)
|
||||
parser.add_argument(
|
||||
"--config_name",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Pretrained config name or path if not the same as model_name",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--batch_size",
|
||||
type=int,
|
||||
default=8,
|
||||
help="Batch size (per dp group) for the training dataloader.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--learning_rate",
|
||||
type=float,
|
||||
default=5e-5,
|
||||
help="Initial learning rate (after the potential warmup period) to use.",
|
||||
)
|
||||
parser.add_argument("--weight_decay", type=float, default=0.0, help="Weight decay to use.")
|
||||
parser.add_argument(
|
||||
"--max_train_steps",
|
||||
type=int,
|
||||
default=20,
|
||||
help="Total number of training steps to perform.",
|
||||
)
|
||||
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
|
||||
parser.add_argument(
|
||||
"--model_type",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Model type to use if training from scratch.",
|
||||
choices=MODEL_TYPES,
|
||||
)
|
||||
parser.add_argument("--mem_cap", type=int, default=0, help="use mem cap")
|
||||
parser.add_argument("--init_in_cpu", action='store_true', default=False, help="init training model in cpu")
|
||||
args = parser.parse_args()
|
||||
|
||||
return args
|
||||
|
||||
|
||||
def colo_memory_cap(size_in_GB):
|
||||
from colossalai.utils import colo_device_memory_capacity, colo_set_process_memory_fraction, get_current_device
|
||||
cuda_capacity = colo_device_memory_capacity(get_current_device())
|
||||
if size_in_GB * (1024**3) < cuda_capacity:
|
||||
colo_set_process_memory_fraction(size_in_GB * (1024**3) / cuda_capacity)
|
||||
print("Using {} GB of GPU memory".format(size_in_GB))
|
||||
|
||||
|
||||
def main():
|
||||
args = parse_args()
|
||||
disable_existing_loggers()
|
||||
colossalai.launch_from_torch({})
|
||||
logger = get_dist_logger()
|
||||
is_main_process = dist.get_rank() == 0
|
||||
|
||||
if is_main_process:
|
||||
datasets.utils.logging.set_verbosity_warning()
|
||||
transformers.utils.logging.set_verbosity_info()
|
||||
else:
|
||||
datasets.utils.logging.set_verbosity_error()
|
||||
transformers.utils.logging.set_verbosity_error()
|
||||
|
||||
if args.mem_cap > 0:
|
||||
colo_memory_cap(args.mem_cap)
|
||||
|
||||
# If passed along, set the training seed now.
|
||||
if args.seed is not None:
|
||||
torch.mannul_seed(args.seed)
|
||||
logger.info(f"Rank {dist.get_rank()}: random seed is set to {args.seed}")
|
||||
|
||||
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
|
||||
# https://huggingface.co/docs/datasets/loading_datasets.html.
|
||||
|
||||
# Load pretrained model
|
||||
# In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
|
||||
# download model & vocab.
|
||||
if args.config_name:
|
||||
config = AutoConfig.from_pretrained(args.config_name)
|
||||
elif args.model_name_or_path:
|
||||
config = AutoConfig.from_pretrained(args.model_name_or_path)
|
||||
else:
|
||||
config = CONFIG_MAPPING[args.model_type]()
|
||||
logger.warning("You are instantiating a new config instance from scratch.")
|
||||
logger.info("Model config has been created", ranks=[0])
|
||||
|
||||
if args.init_in_cpu:
|
||||
init_dev = torch.device('cpu')
|
||||
else:
|
||||
init_dev = get_current_device()
|
||||
|
||||
# build model
|
||||
if args.model_name_or_path is None or args.model_name_or_path == 'facebook/opt-13b':
|
||||
# currently, there has a bug in pretrained opt-13b
|
||||
# we can not import it until huggingface fix it
|
||||
logger.info("Train a new model from scratch", ranks=[0])
|
||||
with ColoInitContext(device=init_dev, dtype=torch.half):
|
||||
model = OPTForCausalLM(config)
|
||||
else:
|
||||
logger.info("Finetune a pre-trained model", ranks=[0])
|
||||
with ColoInitContext(device=init_dev, dtype=torch.half):
|
||||
model = OPTForCausalLM.from_pretrained(args.model_name_or_path,
|
||||
from_tf=bool(".ckpt" in args.model_name_or_path),
|
||||
config=config,
|
||||
local_files_only=False)
|
||||
|
||||
# enable graident checkpointing
|
||||
model.gradient_checkpointing_enable()
|
||||
|
||||
numel = sum([p.numel() for p in model.parameters()])
|
||||
PLACEMENT_POLICY = 'cpu'
|
||||
model = GeminiDDP(model, device=get_current_device(), placement_policy=PLACEMENT_POLICY, pin_memory=True)
|
||||
optimizer = GeminiAdamOptimizer(model, lr=args.learning_rate, initial_scale=2**14, gpu_margin_mem_ratio=0.0)
|
||||
|
||||
SEQ_LEN = 1024
|
||||
VOCAB_SIZE = 50257
|
||||
|
||||
get_tflops_func = partial(get_tflops, numel, args.batch_size, SEQ_LEN)
|
||||
|
||||
model.train()
|
||||
for step in range(args.max_train_steps):
|
||||
st_time = time.time()
|
||||
input_ids, attn_mask = get_data(args.batch_size, SEQ_LEN, VOCAB_SIZE)
|
||||
|
||||
outputs = model(input_ids=input_ids, attention_mask=attn_mask, labels=input_ids, use_cache=False)
|
||||
loss = outputs['loss']
|
||||
optimizer.backward(loss)
|
||||
|
||||
optimizer.step()
|
||||
optimizer.zero_grad()
|
||||
torch.cuda.synchronize()
|
||||
step_time = time.time() - st_time
|
||||
step_tflops = get_tflops_func(step_time)
|
||||
|
||||
logger.info("step {} finished, Tflops {}".format(step, step_tflops), ranks=[0])
|
||||
|
||||
logger.info("Training finished", ranks=[0])
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
Loading…
Reference in New Issue