mirror of https://github.com/hpcaitech/ColossalAI
[pipeline] finish bloom models pipeline and tests (#4223)
* bloom policy * llama pipeline forward and tests * fix the output and attention_mask * fix name * bind argument to policy * finish bloom model * test shard gpt2 * clear cache * support all bloom models * add bloom models policies * finish bloom pipeline and tests * add set pipeline * finish bloompull/4445/head
parent
e7cc62d735
commit
34f0e34a4c
|
@ -1,15 +1,27 @@
|
|||
import warnings
|
||||
from functools import partial
|
||||
from types import MethodType
|
||||
from typing import Dict, List, Optional, Tuple, Union
|
||||
from typing import Callable, Dict, List, Optional, Tuple, Union
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch import Tensor
|
||||
from torch.nn import CrossEntropyLoss, Module
|
||||
from transformers.modeling_outputs import BaseModelOutputWithPastAndCrossAttentions
|
||||
from transformers.models.bloom.modeling_bloom import BloomModel
|
||||
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, Module, MSELoss
|
||||
from transformers.modeling_outputs import (
|
||||
BaseModelOutputWithPastAndCrossAttentions,
|
||||
CausalLMOutputWithCrossAttentions,
|
||||
QuestionAnsweringModelOutput,
|
||||
SequenceClassifierOutputWithPast,
|
||||
TokenClassifierOutput,
|
||||
)
|
||||
from transformers.models.bloom.modeling_bloom import (
|
||||
BloomForCausalLM,
|
||||
BloomForQuestionAnswering,
|
||||
BloomForSequenceClassification,
|
||||
BloomForTokenClassification,
|
||||
BloomModel,
|
||||
)
|
||||
from transformers.utils import logging
|
||||
|
||||
import colossalai.shardformer.layer as col_nn
|
||||
|
@ -123,6 +135,24 @@ class BloomPolicy(Policy):
|
|||
def postprocess(self):
|
||||
return self.model
|
||||
|
||||
def set_pipeline_forward(self, model_cls: nn.Module, new_forward: Callable, policy: Dict) -> None:
|
||||
"""If under pipeline parallel setting, replacing the original forward method of huggingface
|
||||
to customized forward method, and add this changing to policy."""
|
||||
if self.pipeline_stage_manager:
|
||||
stage_manager = self.pipeline_stage_manager
|
||||
if self.model.__class__.__name__ == "BloomModel":
|
||||
module = self.model
|
||||
else:
|
||||
module = self.model.transformer
|
||||
|
||||
layers_per_stage = Policy.distribute_layers(len(module.h), stage_manager.num_stages)
|
||||
stage_index = Policy.get_stage_index(layers_per_stage, stage_manager.stage)
|
||||
method_replacement = {'forward': partial(new_forward, stage_manager=stage_manager, stage_index=stage_index)}
|
||||
self.append_or_create_method_replacement(description=method_replacement,
|
||||
policy=policy,
|
||||
target_key=model_cls)
|
||||
return
|
||||
|
||||
|
||||
class BloomModelPolicy(BloomPolicy):
|
||||
|
||||
|
@ -132,14 +162,7 @@ class BloomModelPolicy(BloomPolicy):
|
|||
def module_policy(self):
|
||||
policy = super().module_policy()
|
||||
from transformers.models.bloom.modeling_bloom import BloomModel
|
||||
if self.pipeline_stage_manager:
|
||||
stage_manager = self.pipeline_stage_manager
|
||||
layers_per_stage = Policy.distribute_layers(len(self.model.h), stage_manager.num_stages)
|
||||
stage_index = Policy.get_stage_index(layers_per_stage, stage_manager.stage)
|
||||
policy[BloomModel] = ModulePolicyDescription(method_replacement={
|
||||
"forward":
|
||||
partial(bloom_model_forward, stage_manager=self.pipeline_stage_manager, stage_index=stage_index)
|
||||
})
|
||||
self.set_pipeline_forward(model_cls=BloomModel, new_forward=bloom_model_forward, policy=policy)
|
||||
return policy
|
||||
|
||||
def get_held_layers(self) -> List[Module]:
|
||||
|
@ -163,7 +186,7 @@ class BloomModelPolicy(BloomPolicy):
|
|||
return held_layers
|
||||
|
||||
def get_shared_params(self) -> List[Dict[int, Tensor]]:
|
||||
'''no shared params in bloommodel'''
|
||||
'''no shared params in bloom model'''
|
||||
return []
|
||||
|
||||
|
||||
|
@ -180,10 +203,38 @@ class BloomForCausalLMPolicy(BloomPolicy):
|
|||
policy=policy,
|
||||
target_key=BloomForCausalLM)
|
||||
|
||||
self.set_pipeline_forward(model_cls=BloomForCausalLM, new_forward=bloom_for_causal_lm_forward, policy=policy)
|
||||
return policy
|
||||
|
||||
def get_held_layers(self) -> List[Module]:
|
||||
"""Get pipeline layers for current stage."""
|
||||
module = self.model
|
||||
stage_manager = self.pipeline_stage_manager
|
||||
held_layers = []
|
||||
layers_per_stage = self.distribute_layers(len(module.transformer.h), stage_manager.num_stages)
|
||||
if stage_manager.is_first_stage():
|
||||
held_layers.append(module.transformer.word_embeddings)
|
||||
held_layers.append(module.transformer.word_embeddings_layernorm)
|
||||
start_idx, end_idx = self.get_stage_index(layers_per_stage, stage_manager.stage)
|
||||
held_layers.extend(module.transformer.h[start_idx:end_idx])
|
||||
if stage_manager.is_last_stage():
|
||||
held_layers.append(module.transformer.ln_f)
|
||||
held_layers.append(module.lm_head)
|
||||
return held_layers
|
||||
|
||||
def get_shared_params(self) -> List[Dict[int, Tensor]]:
|
||||
bloom_model = self.model
|
||||
if self.pipeline_stage_manager:
|
||||
if id(bloom_model.transformer.word_embeddings.weight) == id(bloom_model.lm_head.weight):
|
||||
# tie weights
|
||||
return [{
|
||||
0: bloom_model.transformer.word_embeddings.weight,
|
||||
self.stage_manager.num_stages - 1: bloom_model.lm_head.weight
|
||||
}]
|
||||
return []
|
||||
|
||||
def postprocess(self):
|
||||
if self.shard_config.enable_tensor_parallelism:
|
||||
if self.shard_config.enable_tensor_parallelism and self.pipeline_stage_manager is None:
|
||||
binding_map = {"transformer.word_embeddings.weight": "lm_head.weight"}
|
||||
|
||||
for k, v in binding_map.items():
|
||||
|
@ -205,9 +256,31 @@ class BloomForSequenceClassificationPolicy(BloomPolicy):
|
|||
suffix="score", target_module=col_nn.Linear1D_Col, kwargs=dict(gather_output=True)),
|
||||
policy=policy,
|
||||
target_key=BloomForSequenceClassification)
|
||||
|
||||
self.set_pipeline_forward(model_cls=BloomForSequenceClassification,
|
||||
new_forward=bloom_for_sequence_classification_forward,
|
||||
policy=policy)
|
||||
return policy
|
||||
|
||||
def get_held_layers(self) -> List[Module]:
|
||||
"""Get pipeline layers for current stage."""
|
||||
module = self.model
|
||||
stage_manager = self.pipeline_stage_manager
|
||||
held_layers = []
|
||||
layers_per_stage = self.distribute_layers(len(module.transformer.h), stage_manager.num_stages)
|
||||
if stage_manager.is_first_stage():
|
||||
held_layers.append(module.transformer.word_embeddings)
|
||||
held_layers.append(module.transformer.word_embeddings_layernorm)
|
||||
start_idx, end_idx = self.get_stage_index(layers_per_stage, stage_manager.stage)
|
||||
held_layers.extend(module.transformer.h[start_idx:end_idx])
|
||||
if stage_manager.is_last_stage():
|
||||
held_layers.append(module.transformer.ln_f)
|
||||
held_layers.append(module.score)
|
||||
return held_layers
|
||||
|
||||
def get_shared_params(self) -> List[Dict[int, Tensor]]:
|
||||
"""No shared params in bloom for sequence classification model"""
|
||||
return []
|
||||
|
||||
|
||||
class BloomForTokenClassificationPolicy(BloomPolicy):
|
||||
|
||||
|
@ -229,12 +302,63 @@ class BloomForTokenClassificationPolicy(BloomPolicy):
|
|||
policy=policy,
|
||||
target_key=BloomForTokenClassification)
|
||||
|
||||
self.set_pipeline_forward(model_cls=BloomForTokenClassification,
|
||||
new_forward=bloom_for_token_classification_forward,
|
||||
policy=policy)
|
||||
|
||||
return policy
|
||||
|
||||
def get_held_layers(self) -> List[Module]:
|
||||
"""Get pipeline layers for current stage."""
|
||||
module = self.model
|
||||
stage_manager = self.pipeline_stage_manager
|
||||
held_layers = []
|
||||
layers_per_stage = self.distribute_layers(len(module.transformer.h), stage_manager.num_stages)
|
||||
if stage_manager.is_first_stage():
|
||||
held_layers.append(module.transformer.word_embeddings)
|
||||
held_layers.append(module.transformer.word_embeddings_layernorm)
|
||||
start_idx, end_idx = self.get_stage_index(layers_per_stage, stage_manager.stage)
|
||||
held_layers.extend(module.transformer.h[start_idx:end_idx])
|
||||
if stage_manager.is_last_stage():
|
||||
held_layers.append(module.transformer.ln_f)
|
||||
held_layers.append(module.dropout)
|
||||
held_layers.append(module.classifier)
|
||||
return held_layers
|
||||
|
||||
def get_shared_params(self) -> List[Dict[int, Tensor]]:
|
||||
"""No shared params in bloom for token classification model"""
|
||||
return []
|
||||
|
||||
|
||||
class BloomForQuestionAnsweringPolicy(BloomPolicy):
|
||||
# No head sharding as the output features is only 2
|
||||
pass
|
||||
def module_policy(self):
|
||||
from transformers.models.bloom.modeling_bloom import BloomForQuestionAnswering
|
||||
policy = super().module_policy()
|
||||
self.set_pipeline_forward(model_cls=BloomForQuestionAnswering,
|
||||
new_forward=bloom_for_question_answering_forward,
|
||||
policy=policy)
|
||||
return policy
|
||||
|
||||
def get_held_layers(self) -> List[Module]:
|
||||
"""Get pipeline layers for current stage."""
|
||||
module = self.model
|
||||
stage_manager = self.pipeline_stage_manager
|
||||
held_layers = []
|
||||
layers_per_stage = self.distribute_layers(len(module.transformer.h), stage_manager.num_stages)
|
||||
if stage_manager.is_first_stage():
|
||||
held_layers.append(module.transformer.word_embeddings)
|
||||
held_layers.append(module.transformer.word_embeddings_layernorm)
|
||||
start_idx, end_idx = self.get_stage_index(layers_per_stage, stage_manager.stage)
|
||||
held_layers.extend(module.transformer.h[start_idx:end_idx])
|
||||
if stage_manager.is_last_stage():
|
||||
held_layers.append(module.transformer.ln_f)
|
||||
held_layers.append(module.qa_outputs)
|
||||
return held_layers
|
||||
|
||||
def get_shared_params(self) -> List[Dict[int, Tensor]]:
|
||||
"""No shared params in bloom for question answering model"""
|
||||
return []
|
||||
|
||||
|
||||
def bloom_model_forward(
|
||||
|
@ -406,3 +530,410 @@ def bloom_model_forward(
|
|||
else:
|
||||
# always return dict for imediate stage
|
||||
return {'hidden_states': hidden_states}
|
||||
|
||||
|
||||
def bloom_for_causal_lm_forward(self: 'BloomForCausalLM',
|
||||
input_ids: Optional[torch.LongTensor] = None,
|
||||
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
head_mask: Optional[torch.Tensor] = None,
|
||||
inputs_embeds: Optional[torch.Tensor] = None,
|
||||
labels: Optional[torch.Tensor] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
stage_manager: Optional[PipelineStageManager] = None,
|
||||
hidden_states: Optional[torch.FloatTensor] = None,
|
||||
stage_index: Optional[List[int]] = None,
|
||||
**deprecated_arguments):
|
||||
r"""
|
||||
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||||
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
||||
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
|
||||
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
|
||||
"""
|
||||
if deprecated_arguments.pop("position_ids", False) is not False:
|
||||
# `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None`
|
||||
warnings.warn(
|
||||
"`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore"
|
||||
" passing `position_ids`.",
|
||||
FutureWarning,
|
||||
)
|
||||
if len(deprecated_arguments) > 0:
|
||||
raise ValueError(f"Got unexpected arguments: {deprecated_arguments}")
|
||||
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
# TODO: left the recording kv-value tensors as () or None type, this feature may be added in the future.
|
||||
if output_attentions:
|
||||
logger.warning_once('output_attentions=True is not supported for pipeline models at the moment.')
|
||||
output_attentions = False
|
||||
if output_hidden_states:
|
||||
logger.warning_once('output_hidden_states=True is not supported for pipeline models at the moment.')
|
||||
output_hidden_states = False
|
||||
if return_dict:
|
||||
logger.warning_once('return_dict is not supported for pipeline models at the moment')
|
||||
return_dict = False
|
||||
|
||||
transformer_outputs = bloom_model_forward(self.transformer,
|
||||
input_ids,
|
||||
past_key_values=past_key_values,
|
||||
attention_mask=attention_mask,
|
||||
head_mask=head_mask,
|
||||
inputs_embeds=inputs_embeds,
|
||||
use_cache=use_cache,
|
||||
output_attentions=output_attentions,
|
||||
output_hidden_states=output_hidden_states,
|
||||
return_dict=return_dict,
|
||||
stage_manager=stage_manager,
|
||||
hidden_states=hidden_states,
|
||||
stage_index=stage_index)
|
||||
past_key_values = None
|
||||
all_hidden_states = None
|
||||
all_self_attentions = None
|
||||
all_cross_attentions = None
|
||||
if stage_manager.is_last_stage():
|
||||
hidden_states = transformer_outputs[0]
|
||||
lm_logits = self.lm_head(hidden_states)
|
||||
|
||||
loss = None
|
||||
if labels is not None:
|
||||
# move labels to correct device to enable model parallelism
|
||||
labels = labels.to(lm_logits.device)
|
||||
# Shift so that tokens < n predict n
|
||||
shift_logits = lm_logits[..., :-1, :].contiguous()
|
||||
shift_labels = labels[..., 1:].contiguous()
|
||||
batch_size, seq_length, vocab_size = shift_logits.shape
|
||||
# Flatten the tokens
|
||||
loss_fct = CrossEntropyLoss()
|
||||
loss = loss_fct(shift_logits.view(batch_size * seq_length, vocab_size),
|
||||
shift_labels.view(batch_size * seq_length))
|
||||
|
||||
if not return_dict:
|
||||
output = (lm_logits,) + transformer_outputs[1:]
|
||||
return ((loss,) + output) if loss is not None else output
|
||||
|
||||
return CausalLMOutputWithCrossAttentions(
|
||||
loss=loss,
|
||||
logits=lm_logits,
|
||||
past_key_values=transformer_outputs.past_key_values,
|
||||
hidden_states=transformer_outputs.hidden_states,
|
||||
attentions=transformer_outputs.attentions,
|
||||
)
|
||||
else:
|
||||
hidden_states = transformer_outputs.get('hidden_states')
|
||||
return {'hidden_states': hidden_states}
|
||||
|
||||
|
||||
def bloom_for_sequence_classification_forward(
|
||||
self: BloomForSequenceClassification,
|
||||
input_ids: Optional[torch.LongTensor] = None,
|
||||
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
head_mask: Optional[torch.Tensor] = None,
|
||||
inputs_embeds: Optional[torch.Tensor] = None,
|
||||
labels: Optional[torch.Tensor] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
stage_manager: Optional[PipelineStageManager] = None,
|
||||
hidden_states: Optional[torch.FloatTensor] = None,
|
||||
stage_index: Optional[List[int]] = None,
|
||||
**deprecated_arguments,
|
||||
):
|
||||
r"""
|
||||
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||||
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
||||
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
||||
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
||||
"""
|
||||
if deprecated_arguments.pop("position_ids", False) is not False:
|
||||
# `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None`
|
||||
warnings.warn(
|
||||
"`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore"
|
||||
" passing `position_ids`.",
|
||||
FutureWarning,
|
||||
)
|
||||
if len(deprecated_arguments) > 0:
|
||||
raise ValueError(f"Got unexpected arguments: {deprecated_arguments}")
|
||||
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
# TODO: left the recording kv-value tensors as () or None type, this feature may be added in the future.
|
||||
if output_attentions:
|
||||
logger.warning_once('output_attentions=True is not supported for pipeline models at the moment.')
|
||||
output_attentions = False
|
||||
if output_hidden_states:
|
||||
logger.warning_once('output_hidden_states=True is not supported for pipeline models at the moment.')
|
||||
output_hidden_states = False
|
||||
if return_dict:
|
||||
logger.warning_once('return_dict is not supported for pipeline models at the moment')
|
||||
return_dict = False
|
||||
|
||||
transformer_outputs = bloom_model_forward(
|
||||
self.transformer,
|
||||
input_ids,
|
||||
past_key_values=past_key_values,
|
||||
attention_mask=attention_mask,
|
||||
head_mask=head_mask,
|
||||
inputs_embeds=inputs_embeds,
|
||||
use_cache=use_cache,
|
||||
output_attentions=output_attentions,
|
||||
output_hidden_states=output_hidden_states,
|
||||
return_dict=return_dict,
|
||||
stage_manager=stage_manager,
|
||||
hidden_states=hidden_states,
|
||||
stage_index=stage_index,
|
||||
)
|
||||
past_key_values = None
|
||||
all_hidden_states = None
|
||||
all_self_attentions = None
|
||||
all_cross_attentions = None
|
||||
if stage_manager.is_last_stage():
|
||||
batch_size = hidden_states.shape[0]
|
||||
#update batch size
|
||||
hidden_states = transformer_outputs[0]
|
||||
logits = self.score(hidden_states)
|
||||
|
||||
if self.config.pad_token_id is None and batch_size != 1:
|
||||
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
||||
if self.config.pad_token_id is None:
|
||||
sequence_lengths = -1
|
||||
else:
|
||||
if input_ids is not None:
|
||||
sequence_lengths = (torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1).to(logits.device)
|
||||
else:
|
||||
sequence_lengths = -1
|
||||
logger.warning(
|
||||
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
|
||||
"unexpected if using padding tokens in conjunction with `inputs_embeds.`")
|
||||
|
||||
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
||||
|
||||
loss = None
|
||||
if labels is not None:
|
||||
if self.config.problem_type is None:
|
||||
if self.num_labels == 1:
|
||||
self.config.problem_type = "regression"
|
||||
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
||||
self.config.problem_type = "single_label_classification"
|
||||
else:
|
||||
self.config.problem_type = "multi_label_classification"
|
||||
|
||||
if self.config.problem_type == "regression":
|
||||
loss_fct = MSELoss()
|
||||
if self.num_labels == 1:
|
||||
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
||||
else:
|
||||
loss = loss_fct(pooled_logits, labels)
|
||||
elif self.config.problem_type == "single_label_classification":
|
||||
loss_fct = CrossEntropyLoss()
|
||||
loss = loss_fct(pooled_logits, labels)
|
||||
elif self.config.problem_type == "multi_label_classification":
|
||||
loss_fct = BCEWithLogitsLoss()
|
||||
loss = loss_fct(pooled_logits, labels)
|
||||
if not return_dict:
|
||||
output = (pooled_logits,) + transformer_outputs[1:]
|
||||
return ((loss,) + output) if loss is not None else output
|
||||
|
||||
return SequenceClassifierOutputWithPast(
|
||||
loss=loss,
|
||||
logits=pooled_logits,
|
||||
past_key_values=transformer_outputs.past_key_values,
|
||||
hidden_states=transformer_outputs.hidden_states,
|
||||
attentions=transformer_outputs.attentions,
|
||||
)
|
||||
else:
|
||||
hidden_states = transformer_outputs.get('hidden_states')
|
||||
return {'hidden_states': hidden_states}
|
||||
|
||||
|
||||
def bloom_for_token_classification_forward(
|
||||
self: BloomForTokenClassification,
|
||||
input_ids: Optional[torch.LongTensor] = None,
|
||||
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
head_mask: Optional[torch.Tensor] = None,
|
||||
inputs_embeds: Optional[torch.Tensor] = None,
|
||||
labels: Optional[torch.Tensor] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
stage_manager: Optional[PipelineStageManager] = None,
|
||||
hidden_states: Optional[torch.FloatTensor] = None,
|
||||
stage_index: Optional[List[int]] = None,
|
||||
**deprecated_arguments,
|
||||
):
|
||||
r"""
|
||||
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||||
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
||||
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
||||
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
||||
"""
|
||||
if deprecated_arguments.pop("position_ids", False) is not False:
|
||||
# `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None`
|
||||
warnings.warn(
|
||||
"`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore"
|
||||
" passing `position_ids`.",
|
||||
FutureWarning,
|
||||
)
|
||||
if len(deprecated_arguments) > 0:
|
||||
raise ValueError(f"Got unexpected arguments: {deprecated_arguments}")
|
||||
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
# TODO: left the recording kv-value tensors as () or None type, this feature may be added in the future.
|
||||
if output_attentions:
|
||||
logger.warning_once('output_attentions=True is not supported for pipeline models at the moment.')
|
||||
output_attentions = False
|
||||
if output_hidden_states:
|
||||
logger.warning_once('output_hidden_states=True is not supported for pipeline models at the moment.')
|
||||
output_hidden_states = False
|
||||
if return_dict:
|
||||
logger.warning_once('return_dict is not supported for pipeline models at the moment')
|
||||
return_dict = False
|
||||
|
||||
transformer_outputs = bloom_model_forward(
|
||||
self.transformer,
|
||||
input_ids,
|
||||
past_key_values=past_key_values,
|
||||
attention_mask=attention_mask,
|
||||
head_mask=head_mask,
|
||||
inputs_embeds=inputs_embeds,
|
||||
use_cache=use_cache,
|
||||
output_attentions=output_attentions,
|
||||
output_hidden_states=output_hidden_states,
|
||||
return_dict=return_dict,
|
||||
stage_manager=stage_manager,
|
||||
hidden_states=hidden_states,
|
||||
stage_index=stage_index,
|
||||
)
|
||||
past_key_values = None
|
||||
all_hidden_states = None
|
||||
all_self_attentions = None
|
||||
all_cross_attentions = None
|
||||
if stage_manager.is_last_stage():
|
||||
hidden_states = transformer_outputs[0]
|
||||
hidden_states = self.dropout(hidden_states)
|
||||
logits = self.classifier(hidden_states)
|
||||
|
||||
loss = None
|
||||
if labels is not None:
|
||||
# move labels to correct device to enable model parallelism
|
||||
labels = labels.to(logits.device)
|
||||
batch_size, seq_length = labels.shape
|
||||
loss_fct = CrossEntropyLoss()
|
||||
loss = loss_fct(logits.view(batch_size * seq_length, self.num_labels), labels.view(batch_size * seq_length))
|
||||
|
||||
if not return_dict:
|
||||
output = (logits,) + transformer_outputs[2:]
|
||||
return ((loss,) + output) if loss is not None else output
|
||||
|
||||
return TokenClassifierOutput(
|
||||
loss=loss,
|
||||
logits=logits,
|
||||
hidden_states=transformer_outputs.hidden_states,
|
||||
attentions=transformer_outputs.attentions,
|
||||
)
|
||||
else:
|
||||
hidden_states = transformer_outputs.get('hidden_states')
|
||||
return {'hidden_states': hidden_states}
|
||||
|
||||
|
||||
def bloom_for_question_answering_forward(
|
||||
self: BloomForQuestionAnswering,
|
||||
input_ids: Optional[torch.LongTensor] = None,
|
||||
attention_mask: Optional[torch.FloatTensor] = None,
|
||||
position_ids: Optional[torch.LongTensor] = None,
|
||||
head_mask: Optional[torch.FloatTensor] = None,
|
||||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
start_positions: Optional[torch.LongTensor] = None,
|
||||
end_positions: Optional[torch.LongTensor] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
stage_manager: Optional[PipelineStageManager] = None,
|
||||
hidden_states: Optional[torch.FloatTensor] = None,
|
||||
stage_index: Optional[List[int]] = None,
|
||||
):
|
||||
r"""
|
||||
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||||
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
||||
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
||||
are not taken into account for computing the loss.
|
||||
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||||
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
||||
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
||||
are not taken into account for computing the loss.
|
||||
"""
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
# TODO: left the recording kv-value tensors as () or None type, this feature may be added in the future.
|
||||
if output_attentions:
|
||||
logger.warning_once('output_attentions=True is not supported for pipeline models at the moment.')
|
||||
output_attentions = False
|
||||
if output_hidden_states:
|
||||
logger.warning_once('output_hidden_states=True is not supported for pipeline models at the moment.')
|
||||
output_hidden_states = False
|
||||
if return_dict:
|
||||
logger.warning_once('return_dict is not supported for pipeline models at the moment')
|
||||
return_dict = False
|
||||
|
||||
outputs = bloom_model_forward(
|
||||
self.transformer,
|
||||
input_ids,
|
||||
attention_mask=attention_mask,
|
||||
position_ids=position_ids,
|
||||
head_mask=head_mask,
|
||||
inputs_embeds=inputs_embeds,
|
||||
output_attentions=output_attentions,
|
||||
output_hidden_states=output_hidden_states,
|
||||
return_dict=return_dict,
|
||||
stage_manager=stage_manager,
|
||||
hidden_states=hidden_states,
|
||||
stage_index=stage_index,
|
||||
)
|
||||
past_key_values = None
|
||||
all_hidden_states = None
|
||||
all_self_attentions = None
|
||||
all_cross_attentions = None
|
||||
|
||||
if stage_manager.is_last_stage():
|
||||
sequence_output = outputs[0]
|
||||
logits = self.qa_outputs(sequence_output)
|
||||
start_logits, end_logits = logits.split(1, dim=-1)
|
||||
start_logits = start_logits.squeeze(-1).contiguous()
|
||||
end_logits = end_logits.squeeze(-1).contiguous()
|
||||
|
||||
total_loss = None
|
||||
if start_positions is not None and end_positions is not None:
|
||||
# If we are on multi-GPU, split add a dimension
|
||||
if len(start_positions.size()) > 1:
|
||||
start_positions = start_positions.squeeze(-1)
|
||||
if len(end_positions.size()) > 1:
|
||||
end_positions = end_positions.squeeze(-1)
|
||||
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
||||
ignored_index = start_logits.size(1)
|
||||
start_positions = start_positions.clamp(0, ignored_index)
|
||||
end_positions = end_positions.clamp(0, ignored_index)
|
||||
|
||||
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
||||
start_loss = loss_fct(start_logits, start_positions)
|
||||
end_loss = loss_fct(end_logits, end_positions)
|
||||
total_loss = (start_loss + end_loss) / 2
|
||||
|
||||
if not return_dict:
|
||||
output = (start_logits, end_logits) + outputs[2:]
|
||||
return ((total_loss,) + output) if total_loss is not None else output
|
||||
|
||||
return QuestionAnsweringModelOutput(
|
||||
loss=total_loss,
|
||||
start_logits=start_logits,
|
||||
end_logits=end_logits,
|
||||
hidden_states=outputs.hidden_states,
|
||||
attentions=outputs.attentions,
|
||||
)
|
||||
else:
|
||||
hidden_states = outputs.get('hidden_states')
|
||||
return {'hidden_states': hidden_states}
|
||||
|
|
|
@ -46,23 +46,22 @@ def run_bloom_test(enable_fused_normalization, enable_tensor_parallelism, use_la
|
|||
stage_manager = PipelineStageManager(pg_mesh, PP_DIM)
|
||||
|
||||
sub_model_zoo = model_zoo.get_sub_registry('transformers_bloom')
|
||||
x = torch.randint(0, 1000, (2, 3)).cuda()
|
||||
hidden_states = torch.randint(0, 1000, (2, 3, 64)).to(torch.float32).cuda()
|
||||
x = torch.randint(0, 1000, (1, 3)).cuda()
|
||||
hidden_states = torch.randint(0, 1000, (1, 3, 64)).to(torch.float32).cuda()
|
||||
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
|
||||
if name == 'transformers_bloom':
|
||||
org_model, sharded_model = build_pipeline_model(model_fn, stage_manager, enable_fused_normalization,
|
||||
enable_tensor_parallelism, use_lazy_init)
|
||||
if stage_manager.stage == 0:
|
||||
attention_mask = torch.ones_like(x).cuda()
|
||||
output = sharded_model(input_ids=x, attention_mask=attention_mask)
|
||||
assert output['hidden_states'].shape == (2, 3, 64)
|
||||
else:
|
||||
attention_mask = torch.ones((2, 3)).cuda()
|
||||
output = sharded_model(
|
||||
hidden_states=hidden_states,
|
||||
attention_mask=attention_mask,
|
||||
)
|
||||
assert output[0].shape == (2, 3, 64)
|
||||
org_model, sharded_model = build_pipeline_model(model_fn, stage_manager, enable_fused_normalization,
|
||||
enable_tensor_parallelism, use_lazy_init)
|
||||
if stage_manager.stage == 0:
|
||||
attention_mask = torch.ones_like(x).cuda()
|
||||
output = sharded_model(input_ids=x, attention_mask=attention_mask)
|
||||
assert output['hidden_states'].shape == (1, 3, 64)
|
||||
else:
|
||||
attention_mask = torch.ones((1, 3)).cuda()
|
||||
output = sharded_model(
|
||||
hidden_states=hidden_states,
|
||||
attention_mask=attention_mask,
|
||||
)
|
||||
assert output[0].shape[0] == 1
|
||||
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
|
|
Loading…
Reference in New Issue