mirror of https://github.com/hpcaitech/ColossalAI
[utils] add synchronized cuda memory monitor (#740)
parent
e6212f56cd
commit
340e59f968
|
@ -1,9 +1,8 @@
|
|||
from cgitb import Hook
|
||||
from colossalai.registry import HOOKS
|
||||
from torch import Tensor
|
||||
from colossalai.trainer.hooks import BaseHook
|
||||
from colossalai.utils.memory_tracer import AsyncMemoryMonitor
|
||||
from ._metric_hook import LearningRateMetric, MetricHook
|
||||
|
||||
|
||||
@HOOKS.register_module
|
||||
class MemTraceHook(BaseHook):
|
||||
|
@ -11,6 +10,7 @@ class MemTraceHook(BaseHook):
|
|||
This hook is used to record memory usage info, and pass to trainer.states
|
||||
You can use it as other trainer hook and fetch data from trainer.states['metrics][mode]
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
priority: int = 0,
|
||||
|
@ -36,9 +36,9 @@ class MemTraceHook(BaseHook):
|
|||
def before_test_iter(self, trainer):
|
||||
self._memory_monitor.start()
|
||||
return super().before_test(trainer)
|
||||
|
||||
|
||||
def after_test_iter(self, trainer, output: Tensor, label: Tensor, loss: Tensor):
|
||||
self._memory_monitor.finish()
|
||||
trainer.states['metrics']['train'] = self._memory_monitor.state_dict
|
||||
trainer.states['metrics']['test'] = self._memory_monitor.state_dict
|
||||
return super().after_test_iter(trainer, output, label, loss)
|
||||
return super().after_test_iter(trainer, output, label, loss)
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
from .async_memtracer import AsyncMemoryMonitor
|
||||
from .memory_monitor import AsyncMemoryMonitor, SyncCudaMemoryMonitor
|
||||
from .memstats_collector import MemStatsCollector
|
||||
|
||||
__all__ = ['AsyncMemoryMonitor', 'MemStatsCollector']
|
||||
__all__ = ['AsyncMemoryMonitor', 'SyncCudaMemoryMonitor', 'MemStatsCollector']
|
||||
|
|
|
@ -1,103 +1,142 @@
|
|||
from concurrent.futures import ThreadPoolExecutor
|
||||
from time import sleep, time
|
||||
import pickle
|
||||
|
||||
import torch
|
||||
|
||||
from colossalai.utils.memory import colo_device_memory_used
|
||||
from colossalai.utils import get_current_device
|
||||
|
||||
|
||||
class AsyncMemoryMonitor:
|
||||
"""
|
||||
An Async Memory Monitor runing during computing. Sampling memory usage of the current GPU
|
||||
at interval of `1/(10**power)` sec.
|
||||
|
||||
The idea comes from Runtime Memory Tracer of PatrickStar
|
||||
`PatrickStar: Parallel Training of Pre-trained Models via Chunk-based Memory Management`_
|
||||
|
||||
Usage::
|
||||
|
||||
async_mem_monitor = AsyncMemoryMonitor()
|
||||
input = torch.randn(2, 20).cuda()
|
||||
OP1 = torch.nn.Linear(20, 30).cuda()
|
||||
OP2 = torch.nn.Linear(30, 40).cuda()
|
||||
|
||||
async_mem_monitor.start()
|
||||
output = OP1(input)
|
||||
async_mem_monitor.finish()
|
||||
async_mem_monitor.start()
|
||||
output = OP2(output)
|
||||
async_mem_monitor.finish()
|
||||
async_mem_monitor.save('log.pkl')
|
||||
|
||||
|
||||
Args:
|
||||
power (int, optional): the power of time interva. Defaults to 10.
|
||||
|
||||
.. _PatrickStar\: Parallel Training of Pre-trained Models via Chunk-based Memory Management:
|
||||
https://arxiv.org/abs/2108.05818
|
||||
"""
|
||||
|
||||
def __init__(self, power: int = 10):
|
||||
self.keep_measuring = False
|
||||
|
||||
current_device = get_current_device()
|
||||
|
||||
def _set_cuda_device():
|
||||
torch.cuda.set_device(current_device)
|
||||
|
||||
self.executor = ThreadPoolExecutor(max_workers=1, initializer=_set_cuda_device)
|
||||
self.monitor_thread = None
|
||||
self.interval = 1 / (10**power)
|
||||
self.time_stamps = []
|
||||
self.mem_stats = []
|
||||
|
||||
def __len__(self):
|
||||
return len(self.mem_stats)
|
||||
|
||||
def set_interval(self, power: int):
|
||||
self.clear()
|
||||
self.interval = 1 / (10**power)
|
||||
|
||||
def is_measuring(self):
|
||||
return self.keep_measuring
|
||||
|
||||
def start(self):
|
||||
self.keep_measuring = True
|
||||
self.monitor_thread = self.executor.submit(self._measure_usage)
|
||||
|
||||
def finish(self):
|
||||
if self.keep_measuring is False:
|
||||
return 0
|
||||
self.keep_measuring = False
|
||||
max_usage = self.monitor_thread.result()
|
||||
self.monitor_thread = None
|
||||
self.time_stamps.append(time())
|
||||
self.mem_stats.append(max_usage)
|
||||
return max_usage
|
||||
|
||||
def _measure_usage(self):
|
||||
max_usage = 0
|
||||
while self.keep_measuring:
|
||||
max_usage = max(
|
||||
max_usage,
|
||||
colo_device_memory_used(get_current_device()),
|
||||
)
|
||||
sleep(self.interval)
|
||||
return max_usage
|
||||
|
||||
@property
|
||||
def state_dict(self):
|
||||
return {
|
||||
"time_stamps": self.time_stamps,
|
||||
"mem_stats": self.mem_stats,
|
||||
}
|
||||
|
||||
def save(self, filename):
|
||||
with open(filename, "wb") as f:
|
||||
pickle.dump(self.state_dict(), f)
|
||||
|
||||
def clear(self):
|
||||
self.mem_stats.clear()
|
||||
self.time_stamps.clear()
|
||||
from abc import abstractmethod
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
from time import sleep, time
|
||||
import json
|
||||
|
||||
import torch
|
||||
|
||||
from colossalai.utils.memory import colo_device_memory_used
|
||||
from colossalai.utils import get_current_device
|
||||
|
||||
|
||||
class MemoryMonitor:
|
||||
"""Base class for all types of memory monitor.
|
||||
All monitors should have a list called `time_stamps` and a list called `mem_stats`.
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
self.time_stamps = []
|
||||
self.mem_stats = []
|
||||
|
||||
def __len__(self):
|
||||
return len(self.mem_stats)
|
||||
|
||||
@abstractmethod
|
||||
def start(self):
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def finish(self):
|
||||
pass
|
||||
|
||||
def state_dict(self):
|
||||
return {
|
||||
"time_stamps": self.time_stamps,
|
||||
"mem_stats": self.mem_stats,
|
||||
}
|
||||
|
||||
def save(self, filename):
|
||||
with open(filename, "w") as f:
|
||||
json.dump(self.state_dict(), f)
|
||||
|
||||
def clear(self):
|
||||
self.mem_stats.clear()
|
||||
self.time_stamps.clear()
|
||||
|
||||
|
||||
class AsyncMemoryMonitor(MemoryMonitor):
|
||||
"""
|
||||
An Async Memory Monitor runing during computing. Sampling memory usage of the current GPU
|
||||
at interval of `1/(10**power)` sec.
|
||||
|
||||
The idea comes from Runtime Memory Tracer of PatrickStar
|
||||
`PatrickStar: Parallel Training of Pre-trained Models via Chunk-based Memory Management`_
|
||||
|
||||
Usage::
|
||||
|
||||
async_mem_monitor = AsyncMemoryMonitor()
|
||||
input = torch.randn(2, 20).cuda()
|
||||
OP1 = torch.nn.Linear(20, 30).cuda()
|
||||
OP2 = torch.nn.Linear(30, 40).cuda()
|
||||
|
||||
async_mem_monitor.start()
|
||||
output = OP1(input)
|
||||
async_mem_monitor.finish()
|
||||
async_mem_monitor.start()
|
||||
output = OP2(output)
|
||||
async_mem_monitor.finish()
|
||||
async_mem_monitor.save('log.pkl')
|
||||
|
||||
Args:
|
||||
power (int, optional): the power of time interva. Defaults to 10.
|
||||
|
||||
.. _PatrickStar: Parallel Training of Pre-trained Models via Chunk-based Memory Management:
|
||||
https://arxiv.org/abs/2108.05818
|
||||
"""
|
||||
|
||||
def __init__(self, power: int = 10):
|
||||
super().__init__()
|
||||
self.keep_measuring = False
|
||||
|
||||
current_device = get_current_device()
|
||||
|
||||
def _set_cuda_device():
|
||||
torch.cuda.set_device(current_device)
|
||||
|
||||
self.executor = ThreadPoolExecutor(max_workers=1, initializer=_set_cuda_device)
|
||||
self.monitor_thread = None
|
||||
self.interval = 1 / (10**power)
|
||||
|
||||
def set_interval(self, power: int):
|
||||
self.clear()
|
||||
self.interval = 1 / (10**power)
|
||||
|
||||
def is_measuring(self):
|
||||
return self.keep_measuring
|
||||
|
||||
def start(self):
|
||||
self.keep_measuring = True
|
||||
self.monitor_thread = self.executor.submit(self._measure_usage)
|
||||
|
||||
def finish(self):
|
||||
if self.keep_measuring is False:
|
||||
return 0
|
||||
|
||||
self.keep_measuring = False
|
||||
max_usage = self.monitor_thread.result()
|
||||
|
||||
self.monitor_thread = None
|
||||
self.time_stamps.append(time())
|
||||
self.mem_stats.append(max_usage)
|
||||
return max_usage
|
||||
|
||||
def _measure_usage(self):
|
||||
max_usage = 0
|
||||
while self.keep_measuring:
|
||||
max_usage = max(
|
||||
max_usage,
|
||||
colo_device_memory_used(get_current_device()),
|
||||
)
|
||||
sleep(self.interval)
|
||||
return max_usage
|
||||
|
||||
|
||||
class SyncCudaMemoryMonitor(MemoryMonitor):
|
||||
"""
|
||||
A synchronized cuda memory monitor.
|
||||
It only record the maximum allocated cuda memory from start point to finish point.
|
||||
"""
|
||||
|
||||
def __init__(self, power: int = 10):
|
||||
super().__init__()
|
||||
|
||||
def start(self):
|
||||
torch.cuda.synchronize()
|
||||
torch.cuda.reset_peak_memory_stats()
|
||||
|
||||
def finish(self):
|
||||
torch.cuda.synchronize()
|
||||
self.time_stamps.append(time())
|
||||
max_usage = torch.cuda.max_memory_allocated()
|
||||
self.mem_stats.append(max_usage)
|
||||
return max_usage
|
|
@ -1,6 +1,6 @@
|
|||
from colossalai.utils.memory_tracer.model_data_memtracer import GLOBAL_MODEL_DATA_TRACER
|
||||
from colossalai.utils.memory import colo_device_memory_used
|
||||
from colossalai.utils.memory_tracer.async_memtracer import AsyncMemoryMonitor
|
||||
from colossalai.utils.memory_tracer import AsyncMemoryMonitor
|
||||
import torch
|
||||
import time
|
||||
from typing import List
|
||||
|
|
Loading…
Reference in New Issue