Merge branch 'main' of https://github.com/hpcaitech/ColossalAI into rlhf_SimPO

pull/5850/head
YeAnbang 2024-07-10 10:39:34 +00:00
commit 33f15203d3
10 changed files with 560 additions and 50 deletions

View File

@ -132,7 +132,7 @@ class LinearWithAsyncCommunication(torch.autograd.Function):
if use_bias:
bias.view(bias.shape)
total_input = input
total_input = input.contiguous()
grad_input = grad_output.matmul(weight)
grad_output = grad_output.contiguous()
# Convert the tensor shapes to 2D for execution compatibility

View File

@ -11,7 +11,11 @@ from transformers.utils import logging
from colossalai.pipeline.stage_manager import PipelineStageManager
from colossalai.shardformer import ShardConfig
from colossalai.shardformer.layer import AttnMaskType, ColoAttention
from colossalai.shardformer.layer._operation import gather_forward_split_backward, split_forward_gather_backward
from colossalai.shardformer.layer._operation import (
all_to_all_comm,
gather_forward_split_backward,
split_forward_gather_backward,
)
def get_flash_core_attention_forward():
@ -203,6 +207,13 @@ class ChatGLMPipelineForwards:
dim=0,
process_group=shard_config.tensor_parallel_process_group,
)
elif shard_config.sequence_parallelism_mode == "all_to_all":
hidden_states = split_forward_gather_backward(
hidden_states,
dim=0,
process_group=shard_config.sequence_parallel_process_group,
grad_scale=1 / shard_config.sequence_parallel_size,
)
for idx in range(start_idx, end_idx):
layer = self.encoder._get_layer(idx)
if output_hidden_states:
@ -235,6 +246,13 @@ class ChatGLMPipelineForwards:
dim=0,
process_group=shard_config.tensor_parallel_process_group,
)
elif shard_config.sequence_parallelism_mode == "all_to_all":
hidden_states = gather_forward_split_backward(
hidden_states,
dim=0,
process_group=shard_config.sequence_parallel_process_group,
grad_scale=shard_config.sequence_parallel_size,
)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if stage_manager.is_last_stage():
@ -329,7 +347,9 @@ class ChatGLMPipelineForwards:
return transformer_outputs
def get_chatglm_sequence_parallel_forward_fn(shard_config: ShardConfig):
def get_chatglm_sequence_parallel_forward_fn(shard_config: ShardConfig, sp_mode, sp_size, sp_group):
logger = logging.get_logger(__name__)
def forward(
self,
input_ids,
@ -381,13 +401,27 @@ def get_chatglm_sequence_parallel_forward_fn(shard_config: ShardConfig):
rotary_pos_emb = rotary_pos_emb[None, :seq_length]
rotary_pos_emb = rotary_pos_emb.transpose(0, 1).contiguous()
if sp_mode in ["all_to_all"] and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with sp mode `{sp_mode}`. Setting `use_cache=False`..."
)
use_cache = False
# Run encoder.
# [seq_len, batch_size, hidden_size] -> [seq_len/TP_size, batch_size, hidden_size]
inputs_embeds = split_forward_gather_backward(
inputs_embeds,
dim=0,
process_group=shard_config.tensor_parallel_process_group,
)
if sp_mode in ["split_gather"]:
inputs_embeds = split_forward_gather_backward(
inputs_embeds,
dim=0,
process_group=sp_group,
)
elif sp_mode == "all_to_all":
inputs_embeds = split_forward_gather_backward(
inputs_embeds,
dim=0,
process_group=sp_group,
grad_scale=1 / sp_size,
)
hidden_states, presents, all_hidden_states, all_self_attentions = self.encoder(
inputs_embeds,
full_attention_mask,
@ -397,11 +431,19 @@ def get_chatglm_sequence_parallel_forward_fn(shard_config: ShardConfig):
output_hidden_states=output_hidden_states,
)
hidden_states = gather_forward_split_backward(
hidden_states,
dim=0,
process_group=shard_config.tensor_parallel_process_group,
)
if sp_mode in ["split_gather"]:
hidden_states = gather_forward_split_backward(
hidden_states,
dim=0,
process_group=shard_config.tensor_parallel_process_group,
)
elif sp_mode == "all_to_all":
hidden_states = gather_forward_split_backward(
hidden_states,
dim=0,
process_group=sp_group,
grad_scale=sp_size,
)
if not return_dict:
return tuple(
@ -423,3 +465,158 @@ def get_chatglm_sequence_parallel_forward_fn(shard_config: ShardConfig):
)
return forward
def get_chatglm_sequence_parallel_attention_forward(shard_config: ShardConfig, sp_mode, sp_size, sp_group):
from .chatglm2_6b.modeling_chatglm import apply_rotary_pos_emb, split_tensor_along_last_dim
def forward(
self,
hidden_states,
attention_mask,
rotary_pos_emb,
kv_cache=None,
use_cache=True,
):
if sp_mode is not None:
assert sp_mode in ["all_to_all", "split_gather"], "Invalid sp_mode"
assert (sp_size is not None) and (
sp_group is not None
), "Must specify sp_size and sp_group for sequence parallel"
mixed_x_layer = self.query_key_value(hidden_states)
if self.multi_query_attention:
(query_layer, key_layer, value_layer) = mixed_x_layer.split(
[
self.num_attention_heads_per_partition * self.hidden_size_per_attention_head,
self.num_multi_query_groups_per_partition * self.hidden_size_per_attention_head,
self.num_multi_query_groups_per_partition * self.hidden_size_per_attention_head,
],
dim=-1,
)
query_layer = query_layer.view(
query_layer.size()[:-1]
+ (
self.num_attention_heads_per_partition,
self.hidden_size_per_attention_head,
)
)
key_layer = key_layer.view(
key_layer.size()[:-1]
+ (
self.num_multi_query_groups_per_partition,
self.hidden_size_per_attention_head,
)
)
value_layer = value_layer.view(
value_layer.size()[:-1]
+ (
self.num_multi_query_groups_per_partition,
self.hidden_size_per_attention_head,
)
)
else:
new_tensor_shape = mixed_x_layer.size()[:-1] + (
self.num_attention_heads_per_partition,
3 * self.hidden_size_per_attention_head,
)
mixed_x_layer = mixed_x_layer.view(*new_tensor_shape)
# [sq, b, np, 3 * hn] --> 3 [sq, b, np, hn]
(query_layer, key_layer, value_layer) = split_tensor_along_last_dim(mixed_x_layer, 3)
# sp: all-to-all comminucation when introducing sequence parallel
if sp_mode == "all_to_all":
sq, bs, _, _ = value_layer.size()
query_layer = query_layer.reshape(sq, bs, -1)
key_layer = key_layer.reshape(sq, bs, -1)
value_layer = value_layer.reshape(sq, bs, -1)
query_layer = all_to_all_comm(query_layer, sp_group, gather_dim=0)
key_layer = all_to_all_comm(key_layer, sp_group, gather_dim=0)
value_layer = all_to_all_comm(value_layer, sp_group, gather_dim=0)
query_layer = query_layer.view(
sq * sp_size,
bs,
self.num_attention_heads_per_partition // sp_size,
self.hidden_size_per_attention_head,
).contiguous()
key_layer = key_layer.view(
sq * sp_size,
bs,
self.num_attention_heads_per_partition // sp_size,
self.hidden_size_per_attention_head,
).contiguous()
value_layer = value_layer.view(
sq * sp_size,
bs,
self.num_attention_heads_per_partition // sp_size,
self.hidden_size_per_attention_head,
).contiguous()
# apply relative positional encoding (rotary embedding)
if rotary_pos_emb is not None:
query_layer = apply_rotary_pos_emb(query_layer, rotary_pos_emb)
key_layer = apply_rotary_pos_emb(key_layer, rotary_pos_emb)
# adjust key and value for inference
if kv_cache is not None:
cache_k, cache_v = kv_cache
key_layer = torch.cat((cache_k, key_layer), dim=0)
value_layer = torch.cat((cache_v, value_layer), dim=0)
if use_cache:
kv_cache = (key_layer, value_layer)
else:
kv_cache = None
if self.multi_query_attention:
key_layer = key_layer.unsqueeze(-2)
key_layer = key_layer.expand(
-1,
-1,
-1,
self.num_attention_heads_per_partition // self.num_multi_query_groups_per_partition,
-1,
)
key_layer = key_layer.contiguous().view(
key_layer.size()[:2]
+ (
self.num_attention_heads_per_partition,
self.hidden_size_per_attention_head,
)
)
value_layer = value_layer.unsqueeze(-2)
value_layer = value_layer.expand(
-1,
-1,
-1,
self.num_attention_heads_per_partition // self.num_multi_query_groups_per_partition,
-1,
)
value_layer = value_layer.contiguous().view(
value_layer.size()[:2]
+ (
self.num_attention_heads_per_partition // sp_size,
self.hidden_size_per_attention_head,
)
)
# ==================================
# core attention computation
# ==================================
context_layer = self.core_attention(query_layer, key_layer, value_layer, attention_mask)
if sp_mode == "all_to_all":
context_layer = all_to_all_comm(context_layer, sp_group, gather_dim=2, scatter_dim=0)
# =================
# Output. [sq, b, h]
# =================
output = self.dense(context_layer)
return output, kv_cache
return forward

View File

@ -134,6 +134,21 @@ class CommandPipelineForwards:
)
use_cache = False
if shard_config and shard_config.enable_sequence_parallelism:
if shard_config.sequence_parallelism_mode in ["split_gather", "ring"]:
hidden_states = split_forward_gather_backward(
hidden_states,
dim=1,
process_group=shard_config.tensor_parallel_process_group,
)
elif shard_config.sequence_parallelism_mode == "all_to_all":
hidden_states = split_forward_gather_backward(
hidden_states,
dim=1,
process_group=shard_config.sequence_parallel_process_group,
grad_scale=1 / shard_config.sequence_parallel_size,
)
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
@ -190,6 +205,21 @@ class CommandPipelineForwards:
if stage_manager.is_last_stage():
hidden_states = self.norm(hidden_states)
if shard_config and shard_config.enable_sequence_parallelism:
if shard_config.sequence_parallelism_mode in ["split_gather", "ring"]:
hidden_states = gather_forward_split_backward(
hidden_states,
dim=1,
process_group=shard_config.tensor_parallel_process_group,
)
elif shard_config.sequence_parallelism_mode == "all_to_all":
hidden_states = gather_forward_split_backward(
hidden_states,
dim=1,
process_group=shard_config.sequence_parallel_process_group,
grad_scale=shard_config.sequence_parallel_size,
)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)

View File

@ -1,6 +1,7 @@
from typing import List, Optional, Tuple, Union
import torch
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from transformers.modeling_outputs import (
BaseModelOutputWithPast,
@ -30,6 +31,11 @@ except ImportError:
from transformers.utils import logging
from colossalai.pipeline.stage_manager import PipelineStageManager
from colossalai.shardformer.layer._operation import (
all_to_all_comm,
gather_forward_split_backward,
split_forward_gather_backward,
)
from colossalai.shardformer.shard import ShardConfig
from ..layer import ColoAttention, dist_cross_entropy
@ -162,6 +168,21 @@ class Qwen2PipelineForwards:
sliding_window=self.config.sliding_window,
)
if shard_config and shard_config.enable_sequence_parallelism:
if shard_config.sequence_parallelism_mode in ["split_gather", "ring"]:
hidden_states = split_forward_gather_backward(
hidden_states,
dim=1,
process_group=shard_config.tensor_parallel_process_group,
)
elif shard_config.sequence_parallelism_mode == "all_to_all":
hidden_states = split_forward_gather_backward(
hidden_states,
dim=1,
process_group=shard_config.sequence_parallel_process_group,
grad_scale=1 / shard_config.sequence_parallel_size,
)
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
@ -218,6 +239,20 @@ class Qwen2PipelineForwards:
if stage_manager.is_last_stage():
hidden_states = self.norm(hidden_states)
if shard_config and shard_config.enable_sequence_parallelism:
if shard_config.sequence_parallelism_mode in ["split_gather", "ring"]:
hidden_states = gather_forward_split_backward(
hidden_states,
dim=1,
process_group=shard_config.tensor_parallel_process_group,
)
elif shard_config.sequence_parallelism_mode == "all_to_all":
hidden_states = gather_forward_split_backward(
hidden_states,
dim=1,
process_group=shard_config.sequence_parallel_process_group,
grad_scale=shard_config.sequence_parallel_size,
)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
@ -453,7 +488,7 @@ class Qwen2PipelineForwards:
return {"hidden_states": hidden_states}
def get_qwen2_flash_attention_forward(shard_config: ShardConfig):
def get_qwen2_flash_attention_forward(shard_config: ShardConfig, sp_mode=None, sp_size=None, sp_group=None):
def forward(
self: Qwen2Attention,
hidden_states: torch.Tensor,
@ -464,12 +499,28 @@ def get_qwen2_flash_attention_forward(shard_config: ShardConfig):
use_cache: bool = False,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
if sp_mode is not None:
assert sp_mode in ["all_to_all", "split_gather", "ring"], "Invalid sp_mode"
assert (sp_size is not None) and (
sp_group is not None
), "Must specify sp_size and sp_group for sequence parallel"
bsz, q_len, _ = hidden_states.size()
# sp: modify sp_len when sequence parallel mode is ring
if sp_mode in ["split_gather", "ring"]:
q_len *= sp_size
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
# sp: all-to-all comminucation when introducing sequence parallel
if sp_mode == "all_to_all":
query_states = all_to_all_comm(query_states, sp_group)
key_states = all_to_all_comm(key_states, sp_group)
value_states = all_to_all_comm(value_states, sp_group)
bsz, q_len, _ = query_states.size()
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
@ -522,10 +573,41 @@ def get_qwen2_flash_attention_forward(shard_config: ShardConfig):
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
assert isinstance(attention_mask, dict), "Flash Attention Error: attention_mask should be a dict."
attn_output = ColoAttention.attention(query_states, key_states, value_states, **attention_mask)
if shard_config.enable_flash_attention:
assert isinstance(attention_mask, dict), "Flash Attention Error: attention_mask should be a dict."
attn_output = ColoAttention.attention(query_states, key_states, value_states, **attention_mask)
else:
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
raise ValueError(
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights + attention_mask
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_output = torch.matmul(attn_weights, value_states)
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
if sp_mode == "all_to_all":
attn_output = attn_output.reshape(bsz, q_len, self.num_heads * self.head_dim)
attn_output = all_to_all_comm(attn_output, sp_group, scatter_dim=1, gather_dim=2)
else:
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
attn_output = self.o_proj(attn_output)
return attn_output, None, past_key_value
@ -533,9 +615,8 @@ def get_qwen2_flash_attention_forward(shard_config: ShardConfig):
return forward
def get_qwen2_model_forward_for_flash_attn(shard_config: ShardConfig):
def get_qwen2_model_forward_for_flash_attn(shard_config: ShardConfig, sp_mode=None, sp_size=None, sp_group=None):
logger = logging.get_logger(__name__)
assert shard_config.enable_flash_attention, "Flash Attention is not enabled."
def forward(
self,
@ -585,17 +666,26 @@ def get_qwen2_model_forward_for_flash_attn(shard_config: ShardConfig):
# embed positions
hidden_states = inputs_embeds
# in this case, attention_mask is a dict rather than a tensor
mask_shape = (batch_size, 1, seq_length_with_past, seq_length_with_past)
attention_mask = ColoAttention.prepare_attn_kwargs(
mask_shape,
hidden_states.dtype,
hidden_states.device,
q_padding_mask=attention_mask,
is_causal=True,
)
if shard_config.enable_flash_attention:
# in this case, attention_mask is a dict rather than a tensor
mask_shape = (batch_size, 1, seq_length_with_past, seq_length_with_past)
attention_mask = ColoAttention.prepare_attn_kwargs(
mask_shape,
hidden_states.dtype,
hidden_states.device,
q_padding_mask=attention_mask,
is_causal=True,
)
else:
attention_mask = _prepare_4d_causal_attention_mask(
attention_mask,
(batch_size, seq_length),
inputs_embeds,
past_key_values_length,
sliding_window=self.config.sliding_window,
)
if self.gradient_checkpointing and self.training:
if (self.gradient_checkpointing or sp_mode in ["ring", "all_to_all"]) and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
@ -607,6 +697,11 @@ def get_qwen2_model_forward_for_flash_attn(shard_config: ShardConfig):
all_self_attns = () if output_attentions else None
next_decoder_cache = None
if sp_mode in ["ring", "split_gather"]:
inputs_embeds = split_forward_gather_backward(inputs_embeds, 1, sp_group)
elif sp_mode == "all_to_all":
inputs_embeds = split_forward_gather_backward(inputs_embeds, 1, sp_group, 1 / sp_size)
for decoder_layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)
@ -641,6 +736,11 @@ def get_qwen2_model_forward_for_flash_attn(shard_config: ShardConfig):
hidden_states = self.norm(hidden_states)
if sp_mode == "ring" or sp_mode == "split_gather":
hidden_states = gather_forward_split_backward(hidden_states, 1, sp_group)
elif sp_mode == "all_to_all":
hidden_states = gather_forward_split_backward(hidden_states, 1, sp_group, grad_scale=sp_size)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)

View File

@ -9,6 +9,7 @@ import colossalai.shardformer.layer as col_nn
from colossalai.shardformer.modeling.chatglm2 import ChatGLMPipelineForwards
from ..modeling.chatglm2 import (
get_chatglm_sequence_parallel_attention_forward,
get_chatglm_sequence_parallel_forward_fn,
get_flash_core_attention_forward,
get_jit_fused_glm_block_forward,
@ -58,14 +59,29 @@ class ChatGLMPolicy(Policy):
norm_cls = col_nn.LayerNorm
sp_mode = self.shard_config.sequence_parallelism_mode or None
assert sp_mode != "all_to_all", "all_to_all sequence parallelism is not supported for ChatGLM2"
sp_size = self.shard_config.sequence_parallel_size or None
sp_group = self.shard_config.sequence_parallel_process_group or None
if sp_mode == "ring":
warnings.warn(
f"For ChatGLM2, sequence parallelism is currently not support mode {sp_mode}, will set to be split_gather"
)
sp_mode = "split_gather"
overlap = self.shard_config.enable_sequence_overlap
sp_partial_derived = sp_mode == "split_gather"
sp_partial_derived = sp_mode in ["split_gather"]
if sp_mode == "all_to_all":
decoder_attribute_replacement = {
"num_heads": self.model.config.num_attention_heads // sp_size,
"hidden_size_per_partition": self.model.config.kv_channels
* self.model.config.num_attention_heads
// sp_size,
}
if getattr(self.model.config, "num_key_value_heads", False):
decoder_attribute_replacement["num_key_value_heads"] = self.model.config.num_key_value_heads // sp_size
policy["CoreAttention"] = ModulePolicyDescription(
attribute_replacement=decoder_attribute_replacement,
)
if self.shard_config.enable_tensor_parallelism:
assert (
@ -179,12 +195,26 @@ class ChatGLMPolicy(Policy):
)
# use sequence parallel
if sp_mode == "split_gather":
if self.shard_config.enable_sequence_parallelism:
self.append_or_create_method_replacement(
description={"forward": get_chatglm_sequence_parallel_forward_fn(self.shard_config)},
description={
"forward": get_chatglm_sequence_parallel_attention_forward(
self.shard_config, sp_mode, sp_size, sp_group
),
},
policy=policy,
target_key="ChatGLMModel",
target_key="SelfAttention",
)
if self.pipeline_stage_manager is None:
self.append_or_create_method_replacement(
description={
"forward": get_chatglm_sequence_parallel_forward_fn(
self.shard_config, sp_mode, sp_size, sp_group
)
},
policy=policy,
target_key="ChatGLMModel",
)
# use jit fused operator
if self.shard_config.enable_jit_fused:

View File

@ -1,4 +1,3 @@
import warnings
from functools import partial
from typing import Callable, Dict, List, Union
@ -66,13 +65,6 @@ class CommandPolicy(Policy):
else:
norm_cls = LayerNorm
if self.pipeline_stage_manager is not None:
self.shard_config.enable_sequence_parallelism = False
self.shard_config.enable_sequence_overlap = False
self.shard_config.sequence_parallelism_mode = None
warnings.warn(
f"For Command, sequence parallelism is currently not compatible with pipeline parallelism, set to be False"
)
sp_mode = self.shard_config.sequence_parallelism_mode or None
sp_size = self.shard_config.sequence_parallel_size or None
sp_group = self.shard_config.sequence_parallel_process_group or None

View File

@ -1,4 +1,3 @@
import warnings
from functools import partial
from typing import Callable, Dict, List, Union
@ -82,9 +81,20 @@ class Qwen2Policy(Policy):
embedding_cls = PaddingEmbedding
norm_cls = FusedRMSNorm if self.shard_config.enable_fused_normalization else RMSNorm
if self.shard_config.enable_sequence_parallelism:
self.shard_config.enable_sequence_parallelism = False
warnings.warn("Qwen2 doesn't support sequence parallelism now, will ignore the sequence parallelism flag.")
sp_mode = self.shard_config.sequence_parallelism_mode or None
sp_size = self.shard_config.sequence_parallel_size or None
sp_group = self.shard_config.sequence_parallel_process_group or None
sp_partial_derived = sp_mode in ["split_gather", "ring"]
if sp_mode == "all_to_all":
decoder_attribute_replacement = {
"num_heads": self.model.config.num_attention_heads // sp_size,
}
if getattr(self.model.config, "num_key_value_heads", False):
decoder_attribute_replacement["num_key_value_heads"] = self.model.config.num_key_value_heads // sp_size
policy[attn_cls] = ModulePolicyDescription(
attribute_replacement=decoder_attribute_replacement,
)
if self.shard_config.enable_tensor_parallelism:
assert (
@ -109,30 +119,37 @@ class Qwen2Policy(Policy):
SubModuleReplacementDescription(
suffix="self_attn.q_proj",
target_module=Linear1D_Col,
kwargs=dict(seq_parallel_mode=sp_mode),
),
SubModuleReplacementDescription(
suffix="self_attn.k_proj",
target_module=Linear1D_Col,
kwargs=dict(seq_parallel_mode=sp_mode),
),
SubModuleReplacementDescription(
suffix="self_attn.v_proj",
target_module=Linear1D_Col,
kwargs=dict(seq_parallel_mode=sp_mode),
),
SubModuleReplacementDescription(
suffix="self_attn.o_proj",
target_module=Linear1D_Row,
kwargs=dict(seq_parallel_mode=sp_mode),
),
SubModuleReplacementDescription(
suffix="mlp.gate_proj",
target_module=Linear1D_Col,
kwargs=dict(seq_parallel_mode=sp_mode),
),
SubModuleReplacementDescription(
suffix="mlp.up_proj",
target_module=Linear1D_Col,
kwargs=dict(seq_parallel_mode=sp_mode),
),
SubModuleReplacementDescription(
suffix="mlp.down_proj",
target_module=Linear1D_Row,
kwargs=dict(seq_parallel_mode=sp_mode),
),
],
)
@ -154,10 +171,12 @@ class Qwen2Policy(Policy):
SubModuleReplacementDescription(
suffix="input_layernorm",
target_module=norm_cls,
kwargs={"sp_partial_derived": sp_partial_derived},
),
SubModuleReplacementDescription(
suffix="post_attention_layernorm",
target_module=norm_cls,
kwargs={"sp_partial_derived": sp_partial_derived},
),
],
policy=policy,
@ -168,16 +187,16 @@ class Qwen2Policy(Policy):
description=SubModuleReplacementDescription(
suffix="norm",
target_module=norm_cls,
kwargs={"sp_partial_derived": sp_partial_derived},
),
policy=policy,
target_key=Qwen2Model,
)
# use flash attention
if self.shard_config.enable_flash_attention:
if self.shard_config.enable_flash_attention or self.shard_config.enable_sequence_parallelism:
self.append_or_create_method_replacement(
description={
"forward": get_qwen2_flash_attention_forward(self.shard_config),
"forward": get_qwen2_flash_attention_forward(self.shard_config, sp_mode, sp_size, sp_group),
},
policy=policy,
target_key=attn_cls,
@ -186,7 +205,9 @@ class Qwen2Policy(Policy):
# replace qwen2 model forward method
self.append_or_create_method_replacement(
description={
"forward": get_qwen2_model_forward_for_flash_attn(self.shard_config),
"forward": get_qwen2_model_forward_for_flash_attn(
self.shard_config, sp_mode, sp_size, sp_group
),
},
policy=policy,
target_key=Qwen2Model,

View File

@ -136,6 +136,44 @@ def check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn,
@parameterize(
"test_config",
[
{ # Ulysess + Flash attention
"tp_size": 1,
"pp_size": 2,
"sp_size": 2,
"num_microbatches": 2,
"enable_sequence_parallelism": True,
"sequence_parallelism_mode": "all_to_all",
"enable_flash_attention": True,
"use_lazy_init": True,
"zero_stage": 1,
"precision": "fp16",
"initial_scale": 1,
},
{
"tp_size": 2,
"pp_size": 2,
"sp_size": 2,
"num_microbatches": 2,
"enable_sequence_parallelism": True,
"sequence_parallelism_mode": "split_gather",
"enable_flash_attention": True,
"use_lazy_init": True,
"zero_stage": 1,
"precision": "fp16",
"initial_scale": 1,
},
{
"tp_size": 1,
"pp_size": 1,
"sp_size": 2,
"num_microbatches": 1,
"enable_sequence_parallelism": True,
"sequence_parallelism_mode": "all_to_all",
"use_lazy_init": True,
"zero_stage": 1,
"precision": "fp16",
"initial_scale": 1,
},
{
"tp_size": 4,
"pp_size": 1,

View File

@ -58,6 +58,7 @@ def check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn,
# Check the grad when using ZeRO-1 and ZeRO-2
if (
booster.plugin.zero_stage in [1, 2]
and booster.plugin.shard_config.pipeline_stage_manager is None
and booster.plugin.shard_config.enable_sequence_parallelism
and booster.plugin.shard_config.sequence_parallelism_mode == "all_to_all"
):
@ -154,6 +155,45 @@ def check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn,
@parameterize(
"test_config",
[
{ # Ulysess + Flash attention
"tp_size": 1,
"pp_size": 2,
"sp_size": 2,
"num_microbatches": 2,
"enable_sequence_parallelism": True,
"sequence_parallelism_mode": "all_to_all",
"enable_flash_attention": True,
"use_lazy_init": True,
"zero_stage": 1,
"precision": "fp16",
"initial_scale": 1,
},
{
"tp_size": 2,
"pp_size": 2,
"sp_size": 2,
"num_microbatches": 2,
"enable_sequence_parallelism": True,
"sequence_parallelism_mode": "split_gather",
"enable_flash_attention": True,
"use_lazy_init": True,
"zero_stage": 1,
"precision": "fp16",
"initial_scale": 1,
},
{
"tp_size": 2,
"pp_size": 2,
"sp_size": 2,
"num_microbatches": 2,
"enable_sequence_parallelism": True,
"sequence_parallelism_mode": "ring",
"enable_flash_attention": True,
"use_lazy_init": True,
"zero_stage": 1,
"precision": "fp16",
"initial_scale": 1,
},
{
"tp_size": 2,
"pp_size": 1,

View File

@ -180,6 +180,68 @@ def run_qwen2_test(test_config):
"zero_stage": 1,
"initial_scale": 1,
},
{ # Ulysess + Flash attention
"tp_size": 1,
"pp_size": 2,
"sp_size": 2,
"num_microbatches": 2,
"enable_sequence_parallelism": True,
"sequence_parallelism_mode": "all_to_all",
"enable_flash_attention": True,
"use_lazy_init": True,
"zero_stage": 1,
"precision": "fp16",
"initial_scale": 1,
},
{
"tp_size": 2,
"pp_size": 2,
"sp_size": 2,
"num_microbatches": 2,
"enable_sequence_parallelism": True,
"sequence_parallelism_mode": "split_gather",
"enable_flash_attention": True,
"use_lazy_init": True,
"zero_stage": 1,
"precision": "fp16",
"initial_scale": 1,
},
{
"tp_size": 2,
"pp_size": 2,
"sp_size": 2,
"num_microbatches": 2,
"enable_sequence_parallelism": True,
"sequence_parallelism_mode": "ring",
"enable_flash_attention": True,
"use_lazy_init": True,
"zero_stage": 1,
"precision": "fp16",
"initial_scale": 1,
},
{
"tp_size": 1,
"pp_size": 1,
"sp_size": 2,
"num_microbatches": 1,
"enable_sequence_parallelism": True,
"sequence_parallelism_mode": "all_to_all",
"use_lazy_init": True,
"zero_stage": 1,
"precision": "fp16",
"initial_scale": 1,
},
{
"tp_size": 4,
"pp_size": 1,
"num_microbatches": 1,
"enable_sequence_parallelism": True,
"sequence_parallelism_mode": "split_gather",
"enable_flash_attention": False,
"use_lazy_init": True,
"precision": "fp16",
"initial_scale": 1,
},
{
"tp_size": 2,
"pp_size": 2,