mirror of https://github.com/hpcaitech/ColossalAI
[doc] add supported feature diagram for hybrid parallel plugin (#4996)
parent
c040d70aa0
commit
335cb105e2
|
@ -58,7 +58,11 @@ This plugin implements Zero-3 with chunk-based and heterogeneous memory manageme
|
|||
|
||||
This plugin implements the combination of various parallel training strategies and optimization tools. The features of HybridParallelPlugin can be generally divided into four parts:
|
||||
|
||||
1. Shardformer: This plugin provides an entrance to Shardformer, which controls model sharding under tensor parallel and pipeline parallel setting. Shardformer also overloads the logic of model's forward/backward process to ensure the smooth working of tp/pp. Also, optimization tools including fused normalization, flash attention (xformers), JIT and sequence parallel are injected into the overloaded forward/backward method by Shardformer. More details can be found in chapter [Shardformer Doc](../features/shardformer.md).
|
||||
1. Shardformer: This plugin provides an entrance to Shardformer, which controls model sharding under tensor parallel and pipeline parallel setting. Shardformer also overloads the logic of model's forward/backward process to ensure the smooth working of tp/pp. Also, optimization tools including fused normalization, flash attention (xformers), JIT and sequence parallel are injected into the overloaded forward/backward method by Shardformer. More details can be found in chapter [Shardformer Doc](../features/shardformer.md). The diagram below shows the features supported by shardformer together with hybrid parallel plugin.
|
||||
|
||||
<div align="center">
|
||||
<img src="https://raw.githubusercontent.com/hpcaitech/public_assets/main/colossalai/img/shardformer/shardformer_and_hybridparallel.png" width="500" />
|
||||
</div>
|
||||
|
||||
2. Mixed Precision Training: Support for fp16/bf16 mixed precision training. More details about its arguments configuration can be found in [Mixed Precision Training Doc](../features/mixed_precision_training_with_booster.md).
|
||||
|
||||
|
|
|
@ -55,7 +55,11 @@ Zero-2 不支持局部梯度累积。如果您坚持使用,虽然可以积累
|
|||
|
||||
这个插件实现了多种并行训练策略和优化工具的组合。Hybrid Parallel插件支持的功能大致可以被分为以下四个部分:
|
||||
|
||||
1. Shardformer: Shardformer负责在张量并行以及流水线并行下切分模型的逻辑,以及前向/后向方法的重载,这个插件为Shardformer功能提供了一个简单易用的接口。与此同时,Shardformer还负责将包括fused normalization, flash attention (xformers), JIT和序列并行在内的各类优化工具融入重载后的前向/后向方法。更多关于Shardformer的信息请参考 [Shardformer文档](../features/shardformer.md)。
|
||||
1. Shardformer: Shardformer负责在张量并行以及流水线并行下切分模型的逻辑,以及前向/后向方法的重载,这个插件为Shardformer功能提供了一个简单易用的接口。与此同时,Shardformer还负责将包括fused normalization, flash attention (xformers), JIT和序列并行在内的各类优化工具融入重载后的前向/后向方法。更多关于Shardformer的信息请参考 [Shardformer文档](../features/shardformer.md)。下图展示了Shardformer与Hybrid Parallel插件所支持的功能。
|
||||
|
||||
<div align="center">
|
||||
<img src="https://raw.githubusercontent.com/hpcaitech/public_assets/main/colossalai/img/shardformer/shardformer_and_hybridparallel.png" width="500" />
|
||||
</div>
|
||||
|
||||
2. 混合精度训练:插件支持fp16/bf16的混合精度训练。更多关于混合精度训练的参数配置的详细信息请参考 [混合精度训练文档](../features/mixed_precision_training_with_booster.md)。
|
||||
|
||||
|
|
Loading…
Reference in New Issue