From 32f81f14d480b579a93fd1786fa38b8c2de79189 Mon Sep 17 00:00:00 2001 From: digger yu Date: Fri, 19 May 2023 13:50:00 +0800 Subject: [PATCH] [NFC] fix typo colossalai/amp auto_parallel autochunk (#3756) --- colossalai/amp/torch_amp/_grad_scaler.py | 2 +- .../auto_parallel/meta_profiler/meta_registry/linear.py | 2 +- colossalai/auto_parallel/passes/runtime_apply_pass.py | 2 +- .../auto_parallel/passes/runtime_preparation_pass.py | 4 ++-- colossalai/autochunk/trace_flow.py | 6 +++--- colossalai/autochunk/trace_indice.py | 8 ++++---- 6 files changed, 12 insertions(+), 12 deletions(-) diff --git a/colossalai/amp/torch_amp/_grad_scaler.py b/colossalai/amp/torch_amp/_grad_scaler.py index 7b78998fb..ed4b8e484 100644 --- a/colossalai/amp/torch_amp/_grad_scaler.py +++ b/colossalai/amp/torch_amp/_grad_scaler.py @@ -240,7 +240,7 @@ class GradScaler(object): for grads in per_dtype_grads.values(): torch._amp_foreach_non_finite_check_and_unscale_(grads, per_device_found_inf.get(device), per_device_inv_scale.get(device)) - # For tensor parallel paramters it should be all-reduced over tensor parallel process group + # For tensor parallel parameters it should be all-reduced over tensor parallel process group if gpc.is_initialized(ParallelMode.MODEL) and gpc.get_world_size(ParallelMode.MODEL) > 1: vals = [val for val in per_device_found_inf._per_device_tensors.values()] coalesced = _flatten_dense_tensors(vals) diff --git a/colossalai/auto_parallel/meta_profiler/meta_registry/linear.py b/colossalai/auto_parallel/meta_profiler/meta_registry/linear.py index 7697fc6c3..94dd9143e 100644 --- a/colossalai/auto_parallel/meta_profiler/meta_registry/linear.py +++ b/colossalai/auto_parallel/meta_profiler/meta_registry/linear.py @@ -325,7 +325,7 @@ def matmul_meta_info(*args, **kwargs) -> Tuple[TrainCycleItem, TrainCycleItem, L else: _is_batch_dims_same = False - # retireve dimensions + # retrieve dimensions input_dim_00 = input_tensors[0].shape[-2] input_dim_01 = input_tensors[0].shape[-1] input_dim_10 = input_tensors[1].shape[-2] diff --git a/colossalai/auto_parallel/passes/runtime_apply_pass.py b/colossalai/auto_parallel/passes/runtime_apply_pass.py index a473bb6e9..2049a0618 100644 --- a/colossalai/auto_parallel/passes/runtime_apply_pass.py +++ b/colossalai/auto_parallel/passes/runtime_apply_pass.py @@ -219,7 +219,7 @@ def _comm_spec_apply(gm: torch.fx.GraphModule): return gm -def _act_annotataion_pass(gm: torch.fx.GraphModule): +def _act_annotation_pass(gm: torch.fx.GraphModule): """ This pass is used to add the act annotation to the new inserted nodes. """ diff --git a/colossalai/auto_parallel/passes/runtime_preparation_pass.py b/colossalai/auto_parallel/passes/runtime_preparation_pass.py index 177f3765f..9a2314826 100644 --- a/colossalai/auto_parallel/passes/runtime_preparation_pass.py +++ b/colossalai/auto_parallel/passes/runtime_preparation_pass.py @@ -54,7 +54,7 @@ def size_processing(size: Union[int, torch.Size], return size -def solution_annotatation_pass(gm: torch.fx.GraphModule, solution: List[int], +def solution_annotation_pass(gm: torch.fx.GraphModule, solution: List[int], strategies_constructor: StrategiesConstructor): """ This method is used to stick the solution strategy to the nodes and add the information @@ -496,7 +496,7 @@ def runtime_preparation_pass(gm: torch.fx.GraphModule, device_mesh: DeviceMesh, strategies_constructor: StrategiesConstructor, overlap=False): - gm, sharding_spec_convert_dict, origin_node_sharding_spec_dict, comm_actions_dict = solution_annotatation_pass( + gm, sharding_spec_convert_dict, origin_node_sharding_spec_dict, comm_actions_dict = solution_annotation_pass( gm, solution, strategies_constructor) gm = size_value_converting_pass(gm, device_mesh) gm = node_args_converting_pass(gm, device_mesh) diff --git a/colossalai/autochunk/trace_flow.py b/colossalai/autochunk/trace_flow.py index db25267e9..11a7e62ff 100644 --- a/colossalai/autochunk/trace_flow.py +++ b/colossalai/autochunk/trace_flow.py @@ -64,7 +64,7 @@ class TraceFlow(object): return False return True - def _assgin_single_node_flow( + def _assign_single_node_flow( self, arg_node: Node, start_idx: int, @@ -177,7 +177,7 @@ class TraceFlow(object): if get_node_shape(arg) is None: continue arg_list.append(arg) - flow_flag = self._assgin_single_node_flow( + flow_flag = self._assign_single_node_flow( arg, start_idx, end_idx, @@ -315,7 +315,7 @@ class TraceFlow(object): chunk_info["args"]["prepose_nodes"] = prepose_nodes def _get_non_chunk_inputs(self, chunk_info, start_idx, end_idx): - # we need to log input nodes to avoid deleteing them in the loop + # we need to log input nodes to avoid deleting them in the loop chunk_node_list = self.node_mgr.get_node_slice_by_idx(start_idx, end_idx + 1) # also need to get some prepose node's arg out of non_chunk_inputs for n in chunk_info["args"]["prepose_nodes"]: diff --git a/colossalai/autochunk/trace_indice.py b/colossalai/autochunk/trace_indice.py index d56bf843f..8e6cd3e29 100644 --- a/colossalai/autochunk/trace_indice.py +++ b/colossalai/autochunk/trace_indice.py @@ -461,7 +461,7 @@ class TraceIndice(object): nodes_in.append(node_in) self._inherit_more_indice_from_node_with_exclude(node_in, node) - def _assgin_no_change_indice(self, node, idx): + def _assign_no_change_indice(self, node, idx): self._assign_indice_as_input(node, idx) for node_in in node.args: if type(node_in) == type(node): @@ -792,7 +792,7 @@ class TraceIndice(object): self._add_dim(node_idx, i) dim_from.reverse() - # inheirt indice from current node + # inherit indice from current node if len(dim_from) != 0 and len(dim_to) != 0: if dim_diff == 1: if origin_shape[dim_from[0]] == 1: @@ -852,7 +852,7 @@ class TraceIndice(object): elif "split" == node_name: self._assign_split_indice(node, idx) elif any(i == node_name for i in ["to", "contiguous", "clone", "type", "float"]): - self._assgin_no_change_indice(node, idx) + self._assign_no_change_indice(node, idx) elif "new_ones" == node_name: self._assign_all_indice(node, idx) elif "flatten" == node_name: @@ -914,7 +914,7 @@ class TraceIndice(object): elif "conv2d" == node_name: self._assign_conv2d_indice(node, idx) elif "identity" == node_name: - self._assgin_no_change_indice(node, idx) + self._assign_no_change_indice(node, idx) elif any(n == node_name for n in ["sigmoid", "dropout", "relu", "silu", "gelu"]): self._assign_elementwise_indice(node, idx) else: