mirror of https://github.com/hpcaitech/ColossalAI
[pipelinable]use pipelinable to support GPT model. (#903)
* [CLI] add CLI launcher
* Revert "[CLI] add CLI launcher"
This reverts commit df7e6506d4
.
* [pipelinable]use pipelinable to support GPT model.
* fix a bug caused by ShardedModel
* polish
* fix front func list
pull/933/head
parent
b61d64685f
commit
32a45cd7ef
|
@ -119,9 +119,12 @@ class PipelineSchedule(BaseSchedule):
|
|||
def pre_processing(self, engine):
|
||||
# TODO: remove this after testing new zero with pipeline parallelism
|
||||
model = engine.model
|
||||
if isinstance(model, (NaiveAMPModel, ShardedModelV2)):
|
||||
if isinstance(model, NaiveAMPModel):
|
||||
self.dtype = torch.half
|
||||
model = model.model
|
||||
if isinstance(model, ShardedModelV2):
|
||||
self.dtype = torch.half
|
||||
model = model.module
|
||||
sig = inspect.signature(model.forward)
|
||||
for p in sig.parameters.values():
|
||||
assert p.kind != inspect.Parameter.VAR_POSITIONAL, '*args is not supported'
|
||||
|
@ -135,6 +138,12 @@ class PipelineSchedule(BaseSchedule):
|
|||
else:
|
||||
sig = inspect.signature(model.forward)
|
||||
if isinstance(batch_data, torch.Tensor):
|
||||
for p in sig.parameters.values():
|
||||
if p.kind == inspect.Parameter.VAR_KEYWORD:
|
||||
if input_tensor is None:
|
||||
return model(batch_data)
|
||||
else:
|
||||
return model(input_tensor)
|
||||
if input_tensor is None:
|
||||
return model(batch_data)
|
||||
elif len(sig.parameters) > 1:
|
||||
|
@ -148,7 +157,7 @@ class PipelineSchedule(BaseSchedule):
|
|||
filter_batch = False
|
||||
if filter_batch:
|
||||
batch_data = {k: v for k, v in batch_data.items() if k in sig.parameters}
|
||||
if input_tensor is None:
|
||||
if input_tensor is None and filter_batch:
|
||||
return model(**batch_data)
|
||||
else:
|
||||
return model(input_tensor, **batch_data)
|
||||
|
|
|
@ -1,8 +1,11 @@
|
|||
import torch
|
||||
import functools
|
||||
import inspect
|
||||
from colossalai.amp.naive_amp import NaiveAMPModel
|
||||
from colossalai.utils.model.utils import _substitute_init_recursively, InsertPostInitMethodToModuleSubClasses, call_to_str
|
||||
from colossalai.builder.pipeline import partition_uniform, partition_balanced
|
||||
from colossalai.core import global_context as gpc
|
||||
from colossalai.nn.layer.utils import CheckpointModule
|
||||
from colossalai.tensor import ColoTensor
|
||||
|
||||
|
||||
|
@ -58,11 +61,18 @@ class PipelinableContext(InsertPostInitMethodToModuleSubClasses):
|
|||
if issubclass(obj.__class__, torch.nn.modules.module.Module):
|
||||
obj = self._layer_spec_dict[id(obj)]
|
||||
modified_args.append(obj)
|
||||
# (lyl)TODO: analyse kwargs as well
|
||||
|
||||
modified_kwargs = {}
|
||||
for k, v in kwargs.items():
|
||||
if issubclass(v.__class__, torch.nn.modules.module.Module):
|
||||
v = self._layer_spec_dict[id(v)]
|
||||
# (lyl)TODO: analyse ColoTensor as well
|
||||
modified_kwargs[k] = v
|
||||
|
||||
modified_args = tuple(modified_args)
|
||||
self._root_children = list(module.children())
|
||||
self._model = module
|
||||
layer_spec = LayerSpec(module.__class__, *modified_args, **kwargs)
|
||||
layer_spec = LayerSpec(module.__class__, *modified_args, **modified_kwargs)
|
||||
layer_spec.set_children(module.children())
|
||||
self._layer_spec_dict[module_id] = layer_spec
|
||||
name_list = []
|
||||
|
@ -82,27 +92,48 @@ class PipelinableContext(InsertPostInitMethodToModuleSubClasses):
|
|||
"""
|
||||
if exec_seq is None:
|
||||
#if user do not provide the model executing sequence, we use the initialization order as the executing order.
|
||||
children_name = []
|
||||
for child in self._root_children:
|
||||
layer_spec = self._layer_spec_dict[id(child)]
|
||||
if layer_spec.typename in (torch.nn.modules.container.ModuleList,
|
||||
torch.nn.modules.container.Sequential):
|
||||
for child_in_container in layer_spec.children:
|
||||
self._layer_spec_list.append(self._layer_spec_dict[id(child_in_container)])
|
||||
for name, module in self._model.named_modules():
|
||||
if id(module) == id(child_in_container):
|
||||
children_name.append(name)
|
||||
break
|
||||
|
||||
else:
|
||||
self._layer_spec_list.append(layer_spec)
|
||||
for name, module in self._model.named_modules():
|
||||
if id(module) == id(child):
|
||||
children_name.append(name)
|
||||
break
|
||||
|
||||
else:
|
||||
func_key = "first"
|
||||
front_funcs_list = []
|
||||
for index, element in enumerate(exec_seq):
|
||||
if isinstance(element, str):
|
||||
module = dict(self._model.named_modules())[element]
|
||||
layer_spec = self._layer_spec_dict[id(module)]
|
||||
func_key = layer_spec
|
||||
if len(front_funcs_list) != 0:
|
||||
func_key = (layer_spec, "front")
|
||||
if func_key not in self._func_dict:
|
||||
self._func_dict[func_key] = []
|
||||
for f in front_funcs_list:
|
||||
self._func_dict[func_key].append(f)
|
||||
front_funcs_list = []
|
||||
func_key = (layer_spec, "behind")
|
||||
self._layer_spec_list.append(layer_spec)
|
||||
elif isinstance(element, tuple) and element[1] == "front":
|
||||
front_funcs_list.append(element[0])
|
||||
else:
|
||||
if func_key not in self._func_dict:
|
||||
self._func_dict[func_key] = []
|
||||
if isinstance(element, tuple):
|
||||
self._func_dict[func_key].append(element[0])
|
||||
else:
|
||||
self._func_dict[func_key].append(element)
|
||||
|
||||
def partition(self, num_chunks, pipeline_size, rank):
|
||||
|
@ -128,17 +159,19 @@ class PipelinableContext(InsertPostInitMethodToModuleSubClasses):
|
|||
layers_to_build = []
|
||||
for start, end in parts:
|
||||
layers_to_build += self._layer_spec_list[start:end]
|
||||
func_dict_in_partition = {}
|
||||
behind_func_dict_in_partition = {}
|
||||
front_func_dict_in_partition = {}
|
||||
module_list_in_partition = []
|
||||
if rank == 0 and "first" in self._func_dict:
|
||||
func_dict_in_partition["first"] = self._func_dict["first"]
|
||||
for layer in layers_to_build:
|
||||
module = layer.build()
|
||||
module_list_in_partition.append(module)
|
||||
if layer in self._func_dict:
|
||||
func_dict_in_partition[id(module)] = self._func_dict[layer]
|
||||
if (layer, "front") in self._func_dict:
|
||||
front_func_dict_in_partition[id(module)] = self._func_dict[(layer, "front")]
|
||||
elif (layer, "behind") in self._func_dict:
|
||||
behind_func_dict_in_partition[id(module)] = self._func_dict[(layer, "behind")]
|
||||
module_list_in_partition = torch.nn.ModuleList(module_list_in_partition)
|
||||
pipeline_model = PipelinableModel(module_list_in_partition, func_dict_in_partition)
|
||||
pipeline_model = PipelinableModel(module_list_in_partition, front_func_dict_in_partition,
|
||||
behind_func_dict_in_partition)
|
||||
|
||||
return pipeline_model
|
||||
|
||||
|
@ -146,31 +179,119 @@ class PipelinableContext(InsertPostInitMethodToModuleSubClasses):
|
|||
self._policy = policy
|
||||
|
||||
|
||||
def _build_kwargs_for_module(function, kw_dict):
|
||||
"""
|
||||
Generally, the first argument of module.forward is an input tensor come from the previous layer.
|
||||
Therefore, we just filter the kwargs from second element of the dictionary.
|
||||
"""
|
||||
sig = inspect.signature(function)
|
||||
if len(sig.parameters) <= 1:
|
||||
return None
|
||||
args_name_list = list(sig.parameters.keys())
|
||||
kw_dict = {k: v for k, v in kw_dict.items() if k in args_name_list[1:]}
|
||||
return kw_dict
|
||||
|
||||
|
||||
def _build_kwargs_for_function(function, kw_dict):
|
||||
sig = inspect.signature(function)
|
||||
kw_dict = {k: v for k, v in kw_dict.items() if k in sig.parameters}
|
||||
if len(kw_dict) == 0:
|
||||
return None
|
||||
return kw_dict
|
||||
|
||||
|
||||
def _exec_func_with_kwargs(func, kw_dict, input_tensor, kwargs):
|
||||
"""
|
||||
We suppose the callable object passed to to_layer_list method in two purpose:
|
||||
a. use the callable object to modify input tensor, such as \
|
||||
lambda x: torch.flatten(x, 1)
|
||||
b. use the callable object to modify kwargs value, such as \
|
||||
def foo(attention_mask=None):
|
||||
if attention_mask is not None:
|
||||
batch_size = input_ids.shape[0]
|
||||
attention_mask = attention_mask.view(batch_size, -1)
|
||||
return attention_mask
|
||||
"""
|
||||
|
||||
if kw_dict is not None:
|
||||
rst = func(**kw_dict)
|
||||
if isinstance(rst, tuple):
|
||||
for i, k in enumerate(kw_dict.keys()):
|
||||
kwargs[k] = rst[i]
|
||||
else:
|
||||
for k in kw_dict.keys():
|
||||
kwargs[k] = rst
|
||||
return input_tensor
|
||||
return func(input_tensor)
|
||||
|
||||
|
||||
def _exec_funcs_with_kwargs(func_dict, func_key, input_tensor, kwargs):
|
||||
|
||||
assert func_key in func_dict, f"{func_key} is not in the function_dict."
|
||||
funcs_to_exec = func_dict[func_key]
|
||||
if isinstance(funcs_to_exec, list):
|
||||
for f in funcs_to_exec:
|
||||
f_kwargs = _build_kwargs_for_function(f, kwargs)
|
||||
input_tensor = _exec_func_with_kwargs(f, f_kwargs, input_tensor, kwargs)
|
||||
else:
|
||||
f_kwargs = _build_kwargs_for_function(funcs_to_exec, kwargs)
|
||||
input_tensor = _exec_func_with_kwargs(funcs_to_exec, f_kwargs, input_tensor, kwargs)
|
||||
|
||||
return input_tensor
|
||||
|
||||
|
||||
class PipelinableModel(torch.nn.Module):
|
||||
|
||||
def __init__(self, module_list, func_dict):
|
||||
def __init__(self, module_list, front_func_dict, behind_func_dict):
|
||||
super().__init__()
|
||||
self._module_list = module_list
|
||||
self._func_dict = func_dict
|
||||
self._front_func_dict = front_func_dict
|
||||
self._behind_func_dict = behind_func_dict
|
||||
|
||||
def forward(self, input_tensor):
|
||||
if "first" in self._func_dict:
|
||||
funcs = self._func_dict["first"]
|
||||
if isinstance(funcs, list):
|
||||
for f in funcs:
|
||||
input_tensor = f(input_tensor)
|
||||
else:
|
||||
input_tensor = funcs(input_tensor)
|
||||
def forward(self, input_tensor, **kwargs):
|
||||
|
||||
for module in self._module_list:
|
||||
input_tensor = module(input_tensor)
|
||||
if id(module) in self._func_dict:
|
||||
funcs = self._func_dict[id(module)]
|
||||
if isinstance(funcs, list):
|
||||
for f in funcs:
|
||||
input_tensor = f(input_tensor)
|
||||
|
||||
if id(module) in self._front_func_dict:
|
||||
input_tensor = _exec_funcs_with_kwargs(self._front_func_dict, id(module), input_tensor, kwargs)
|
||||
|
||||
if isinstance(module, CheckpointModule):
|
||||
forward_func = module._forward
|
||||
else:
|
||||
input_tensor = funcs(input_tensor)
|
||||
forward_func = module.forward
|
||||
if input_tensor is None:
|
||||
module_kwargs = _build_kwargs_for_function(forward_func, kwargs)
|
||||
else:
|
||||
module_kwargs = _build_kwargs_for_module(forward_func, kwargs)
|
||||
if module_kwargs is not None and input_tensor is not None:
|
||||
if isinstance(module, CheckpointModule):
|
||||
convert_kwargs_to_args = []
|
||||
for v in module_kwargs.values():
|
||||
convert_kwargs_to_args.append(v)
|
||||
rst = module(input_tensor, *convert_kwargs_to_args)
|
||||
else:
|
||||
rst = module(input_tensor, **module_kwargs)
|
||||
if isinstance(rst, tuple):
|
||||
input_tensor = rst[0]
|
||||
else:
|
||||
input_tensor = rst
|
||||
elif module_kwargs is not None and input_tensor is None:
|
||||
if isinstance(module, CheckpointModule):
|
||||
convert_kwargs_to_args = []
|
||||
for v in module_kwargs.values():
|
||||
convert_kwargs_to_args.append(v)
|
||||
rst = module(input_tensor, *convert_kwargs_to_args)
|
||||
else:
|
||||
rst = module(**module_kwargs)
|
||||
if isinstance(rst, tuple):
|
||||
input_tensor = rst[0]
|
||||
else:
|
||||
input_tensor = rst
|
||||
else:
|
||||
input_tensor = module(input_tensor)
|
||||
|
||||
if id(module) in self._behind_func_dict:
|
||||
input_tensor = _exec_funcs_with_kwargs(self._behind_func_dict, id(module), input_tensor, kwargs)
|
||||
|
||||
return input_tensor
|
||||
|
||||
|
@ -203,7 +324,14 @@ class LayerSpec:
|
|||
obj = obj.build()
|
||||
recovered_args.append(obj)
|
||||
recovered_args = tuple(recovered_args)
|
||||
return self.typename(*recovered_args, **self.module_kwargs)
|
||||
|
||||
recovered_kwargs = {}
|
||||
for k, v in self.module_kwargs.items():
|
||||
if isinstance(v, LayerSpec):
|
||||
v = v.build()
|
||||
recovered_kwargs[k] = v
|
||||
|
||||
return self.typename(*recovered_args, **recovered_kwargs)
|
||||
|
||||
def set_children(self, children):
|
||||
self.children = children
|
||||
|
|
Loading…
Reference in New Issue