[pipelinable]use pipelinable to support GPT model. (#903)

* [CLI] add CLI launcher

* Revert "[CLI] add CLI launcher"

This reverts commit df7e6506d4.

* [pipelinable]use pipelinable to support GPT model.

* fix a bug caused by ShardedModel

* polish

* fix front func list
pull/933/head
YuliangLiu0306 3 years ago committed by GitHub
parent b61d64685f
commit 32a45cd7ef
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -119,9 +119,12 @@ class PipelineSchedule(BaseSchedule):
def pre_processing(self, engine):
# TODO: remove this after testing new zero with pipeline parallelism
model = engine.model
if isinstance(model, (NaiveAMPModel, ShardedModelV2)):
if isinstance(model, NaiveAMPModel):
self.dtype = torch.half
model = model.model
if isinstance(model, ShardedModelV2):
self.dtype = torch.half
model = model.module
sig = inspect.signature(model.forward)
for p in sig.parameters.values():
assert p.kind != inspect.Parameter.VAR_POSITIONAL, '*args is not supported'
@ -135,6 +138,12 @@ class PipelineSchedule(BaseSchedule):
else:
sig = inspect.signature(model.forward)
if isinstance(batch_data, torch.Tensor):
for p in sig.parameters.values():
if p.kind == inspect.Parameter.VAR_KEYWORD:
if input_tensor is None:
return model(batch_data)
else:
return model(input_tensor)
if input_tensor is None:
return model(batch_data)
elif len(sig.parameters) > 1:
@ -148,7 +157,7 @@ class PipelineSchedule(BaseSchedule):
filter_batch = False
if filter_batch:
batch_data = {k: v for k, v in batch_data.items() if k in sig.parameters}
if input_tensor is None:
if input_tensor is None and filter_batch:
return model(**batch_data)
else:
return model(input_tensor, **batch_data)

@ -1,8 +1,11 @@
import torch
import functools
import inspect
from colossalai.amp.naive_amp import NaiveAMPModel
from colossalai.utils.model.utils import _substitute_init_recursively, InsertPostInitMethodToModuleSubClasses, call_to_str
from colossalai.builder.pipeline import partition_uniform, partition_balanced
from colossalai.core import global_context as gpc
from colossalai.nn.layer.utils import CheckpointModule
from colossalai.tensor import ColoTensor
@ -58,11 +61,18 @@ class PipelinableContext(InsertPostInitMethodToModuleSubClasses):
if issubclass(obj.__class__, torch.nn.modules.module.Module):
obj = self._layer_spec_dict[id(obj)]
modified_args.append(obj)
# (lyl)TODO: analyse kwargs as well
modified_kwargs = {}
for k, v in kwargs.items():
if issubclass(v.__class__, torch.nn.modules.module.Module):
v = self._layer_spec_dict[id(v)]
# (lyl)TODO: analyse ColoTensor as well
modified_kwargs[k] = v
modified_args = tuple(modified_args)
self._root_children = list(module.children())
self._model = module
layer_spec = LayerSpec(module.__class__, *modified_args, **kwargs)
layer_spec = LayerSpec(module.__class__, *modified_args, **modified_kwargs)
layer_spec.set_children(module.children())
self._layer_spec_dict[module_id] = layer_spec
name_list = []
@ -82,28 +92,49 @@ class PipelinableContext(InsertPostInitMethodToModuleSubClasses):
"""
if exec_seq is None:
#if user do not provide the model executing sequence, we use the initialization order as the executing order.
children_name = []
for child in self._root_children:
layer_spec = self._layer_spec_dict[id(child)]
if layer_spec.typename in (torch.nn.modules.container.ModuleList,
torch.nn.modules.container.Sequential):
for child_in_container in layer_spec.children:
self._layer_spec_list.append(self._layer_spec_dict[id(child_in_container)])
for name, module in self._model.named_modules():
if id(module) == id(child_in_container):
children_name.append(name)
break
else:
self._layer_spec_list.append(layer_spec)
for name, module in self._model.named_modules():
if id(module) == id(child):
children_name.append(name)
break
else:
func_key = "first"
front_funcs_list = []
for index, element in enumerate(exec_seq):
if isinstance(element, str):
module = dict(self._model.named_modules())[element]
layer_spec = self._layer_spec_dict[id(module)]
func_key = layer_spec
if len(front_funcs_list) != 0:
func_key = (layer_spec, "front")
if func_key not in self._func_dict:
self._func_dict[func_key] = []
for f in front_funcs_list:
self._func_dict[func_key].append(f)
front_funcs_list = []
func_key = (layer_spec, "behind")
self._layer_spec_list.append(layer_spec)
elif isinstance(element, tuple) and element[1] == "front":
front_funcs_list.append(element[0])
else:
if func_key not in self._func_dict:
self._func_dict[func_key] = []
self._func_dict[func_key].append(element)
if isinstance(element, tuple):
self._func_dict[func_key].append(element[0])
else:
self._func_dict[func_key].append(element)
def partition(self, num_chunks, pipeline_size, rank):
"""
@ -128,17 +159,19 @@ class PipelinableContext(InsertPostInitMethodToModuleSubClasses):
layers_to_build = []
for start, end in parts:
layers_to_build += self._layer_spec_list[start:end]
func_dict_in_partition = {}
behind_func_dict_in_partition = {}
front_func_dict_in_partition = {}
module_list_in_partition = []
if rank == 0 and "first" in self._func_dict:
func_dict_in_partition["first"] = self._func_dict["first"]
for layer in layers_to_build:
module = layer.build()
module_list_in_partition.append(module)
if layer in self._func_dict:
func_dict_in_partition[id(module)] = self._func_dict[layer]
if (layer, "front") in self._func_dict:
front_func_dict_in_partition[id(module)] = self._func_dict[(layer, "front")]
elif (layer, "behind") in self._func_dict:
behind_func_dict_in_partition[id(module)] = self._func_dict[(layer, "behind")]
module_list_in_partition = torch.nn.ModuleList(module_list_in_partition)
pipeline_model = PipelinableModel(module_list_in_partition, func_dict_in_partition)
pipeline_model = PipelinableModel(module_list_in_partition, front_func_dict_in_partition,
behind_func_dict_in_partition)
return pipeline_model
@ -146,31 +179,119 @@ class PipelinableContext(InsertPostInitMethodToModuleSubClasses):
self._policy = policy
def _build_kwargs_for_module(function, kw_dict):
"""
Generally, the first argument of module.forward is an input tensor come from the previous layer.
Therefore, we just filter the kwargs from second element of the dictionary.
"""
sig = inspect.signature(function)
if len(sig.parameters) <= 1:
return None
args_name_list = list(sig.parameters.keys())
kw_dict = {k: v for k, v in kw_dict.items() if k in args_name_list[1:]}
return kw_dict
def _build_kwargs_for_function(function, kw_dict):
sig = inspect.signature(function)
kw_dict = {k: v for k, v in kw_dict.items() if k in sig.parameters}
if len(kw_dict) == 0:
return None
return kw_dict
def _exec_func_with_kwargs(func, kw_dict, input_tensor, kwargs):
"""
We suppose the callable object passed to to_layer_list method in two purpose:
a. use the callable object to modify input tensor, such as \
lambda x: torch.flatten(x, 1)
b. use the callable object to modify kwargs value, such as \
def foo(attention_mask=None):
if attention_mask is not None:
batch_size = input_ids.shape[0]
attention_mask = attention_mask.view(batch_size, -1)
return attention_mask
"""
if kw_dict is not None:
rst = func(**kw_dict)
if isinstance(rst, tuple):
for i, k in enumerate(kw_dict.keys()):
kwargs[k] = rst[i]
else:
for k in kw_dict.keys():
kwargs[k] = rst
return input_tensor
return func(input_tensor)
def _exec_funcs_with_kwargs(func_dict, func_key, input_tensor, kwargs):
assert func_key in func_dict, f"{func_key} is not in the function_dict."
funcs_to_exec = func_dict[func_key]
if isinstance(funcs_to_exec, list):
for f in funcs_to_exec:
f_kwargs = _build_kwargs_for_function(f, kwargs)
input_tensor = _exec_func_with_kwargs(f, f_kwargs, input_tensor, kwargs)
else:
f_kwargs = _build_kwargs_for_function(funcs_to_exec, kwargs)
input_tensor = _exec_func_with_kwargs(funcs_to_exec, f_kwargs, input_tensor, kwargs)
return input_tensor
class PipelinableModel(torch.nn.Module):
def __init__(self, module_list, func_dict):
def __init__(self, module_list, front_func_dict, behind_func_dict):
super().__init__()
self._module_list = module_list
self._func_dict = func_dict
def forward(self, input_tensor):
if "first" in self._func_dict:
funcs = self._func_dict["first"]
if isinstance(funcs, list):
for f in funcs:
input_tensor = f(input_tensor)
else:
input_tensor = funcs(input_tensor)
self._front_func_dict = front_func_dict
self._behind_func_dict = behind_func_dict
def forward(self, input_tensor, **kwargs):
for module in self._module_list:
input_tensor = module(input_tensor)
if id(module) in self._func_dict:
funcs = self._func_dict[id(module)]
if isinstance(funcs, list):
for f in funcs:
input_tensor = f(input_tensor)
if id(module) in self._front_func_dict:
input_tensor = _exec_funcs_with_kwargs(self._front_func_dict, id(module), input_tensor, kwargs)
if isinstance(module, CheckpointModule):
forward_func = module._forward
else:
forward_func = module.forward
if input_tensor is None:
module_kwargs = _build_kwargs_for_function(forward_func, kwargs)
else:
module_kwargs = _build_kwargs_for_module(forward_func, kwargs)
if module_kwargs is not None and input_tensor is not None:
if isinstance(module, CheckpointModule):
convert_kwargs_to_args = []
for v in module_kwargs.values():
convert_kwargs_to_args.append(v)
rst = module(input_tensor, *convert_kwargs_to_args)
else:
rst = module(input_tensor, **module_kwargs)
if isinstance(rst, tuple):
input_tensor = rst[0]
else:
input_tensor = rst
elif module_kwargs is not None and input_tensor is None:
if isinstance(module, CheckpointModule):
convert_kwargs_to_args = []
for v in module_kwargs.values():
convert_kwargs_to_args.append(v)
rst = module(input_tensor, *convert_kwargs_to_args)
else:
input_tensor = funcs(input_tensor)
rst = module(**module_kwargs)
if isinstance(rst, tuple):
input_tensor = rst[0]
else:
input_tensor = rst
else:
input_tensor = module(input_tensor)
if id(module) in self._behind_func_dict:
input_tensor = _exec_funcs_with_kwargs(self._behind_func_dict, id(module), input_tensor, kwargs)
return input_tensor
@ -203,7 +324,14 @@ class LayerSpec:
obj = obj.build()
recovered_args.append(obj)
recovered_args = tuple(recovered_args)
return self.typename(*recovered_args, **self.module_kwargs)
recovered_kwargs = {}
for k, v in self.module_kwargs.items():
if isinstance(v, LayerSpec):
v = v.build()
recovered_kwargs[k] = v
return self.typename(*recovered_args, **recovered_kwargs)
def set_children(self, children):
self.children = children

Loading…
Cancel
Save