mirror of https://github.com/hpcaitech/ColossalAI
[shardformer] update bloom/llama/vit/chatglm tests (#4420)
[shardformer] update bloom/llama/vit/chatglm tests [shardformer] update opt tests [shardformer] update opt tests [shardformer] update bloom/llama/vit/chatglm tests [shardformer] update bloom/llama/vit/chatglm tests [shardformer] update bloom/llama/vit/chatglm testspull/4445/head
parent
108e54a0b4
commit
328a791d10
|
@ -36,11 +36,14 @@ def check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn,
|
||||||
|
|
||||||
# check last hidden state & loss
|
# check last hidden state & loss
|
||||||
if stage_manager is None or stage_manager.is_last_stage():
|
if stage_manager is None or stage_manager.is_last_stage():
|
||||||
|
if test_config['precision'] == 'fp32':
|
||||||
|
atol, rtol = 1e-5, 1e-3
|
||||||
|
else:
|
||||||
|
atol, rtol = 5e-3, 5e-3
|
||||||
if org_model.__class__.__name__ == 'BloomModel':
|
if org_model.__class__.__name__ == 'BloomModel':
|
||||||
check_output_hidden_state(org_output, sharded_output, stage_manager, atol=1e-5, rtol=1e-3)
|
check_output_hidden_state(org_output, sharded_output, stage_manager, atol=atol, rtol=rtol)
|
||||||
|
|
||||||
check_loss(org_loss, sharded_loss, atol=1e-6, rtol=1e-3)
|
check_loss(org_loss, sharded_loss, atol=atol, rtol=rtol)
|
||||||
|
|
||||||
# unwrap model
|
# unwrap model
|
||||||
if org_model.__class__.__name__ == 'BloomModel':
|
if org_model.__class__.__name__ == 'BloomModel':
|
||||||
|
@ -54,14 +57,22 @@ def check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn,
|
||||||
row_layer_for_check = ['h[0].self_attention.query_key_value', 'word_embeddings']
|
row_layer_for_check = ['h[0].self_attention.query_key_value', 'word_embeddings']
|
||||||
col_layer_for_check = ['h[0].self_attention.dense']
|
col_layer_for_check = ['h[0].self_attention.dense']
|
||||||
if stage_manager is None or stage_manager.is_first_stage():
|
if stage_manager is None or stage_manager.is_first_stage():
|
||||||
check_grad(bloom, sharded_bloom, row_layer_for_check, tp_group, atol=1e-6, rtol=1e-5, dim=0, verbose=False)
|
if test_config['precision'] == 'fp32':
|
||||||
check_grad(bloom, sharded_bloom, col_layer_for_check, tp_group, atol=1e-6, rtol=1e-5, dim=1, verbose=False)
|
atol, rtol = 1e-6, 1e-5
|
||||||
|
else:
|
||||||
|
atol, rtol = 5e-3, 5e-3
|
||||||
|
check_grad(bloom, sharded_bloom, row_layer_for_check, tp_group, atol=atol, rtol=rtol, dim=0, verbose=False)
|
||||||
|
check_grad(bloom, sharded_bloom, col_layer_for_check, tp_group, atol=atol, rtol=rtol, dim=1, verbose=False)
|
||||||
|
|
||||||
# check weights after optimizer.step()
|
# check weights after optimizer.step()
|
||||||
org_optimizer.step()
|
org_optimizer.step()
|
||||||
sharded_optimizer.step()
|
sharded_optimizer.step()
|
||||||
if stage_manager is None or stage_manager.is_first_stage():
|
if stage_manager is None or stage_manager.is_first_stage():
|
||||||
check_weight(bloom, sharded_bloom, col_layer_for_check, tp_group, atol=1e-4, rtol=1e-3, dim=1, verbose=False)
|
if test_config['precision'] == 'fp32':
|
||||||
|
atol, rtol = 1e-4, 1e-3
|
||||||
|
else:
|
||||||
|
atol, rtol = 5e-3, 5e-3
|
||||||
|
check_weight(bloom, sharded_bloom, col_layer_for_check, tp_group, atol=atol, rtol=rtol, dim=1, verbose=False)
|
||||||
|
|
||||||
torch.cuda.empty_cache()
|
torch.cuda.empty_cache()
|
||||||
|
|
||||||
|
@ -70,29 +81,29 @@ def check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn,
|
||||||
'tp_size': 2,
|
'tp_size': 2,
|
||||||
'pp_size': 2,
|
'pp_size': 2,
|
||||||
'num_microbatches': 4,
|
'num_microbatches': 4,
|
||||||
'enable_fused_normalization': True,
|
'enable_all_optimization': True,
|
||||||
'use_lazy_init': True
|
'use_lazy_init': True,
|
||||||
|
'precision': 'fp16',
|
||||||
|
'initial_scale': 1,
|
||||||
}, {
|
}, {
|
||||||
'tp_size': 1,
|
'tp_size': 1,
|
||||||
'pp_size': 2,
|
'pp_size': 2,
|
||||||
'num_microbatches': 4,
|
'num_microbatches': 4,
|
||||||
'enable_fused_normalization': False,
|
'enable_all_optimization': False,
|
||||||
'use_lazy_init': False
|
'use_lazy_init': False,
|
||||||
|
'precision': 'fp32',
|
||||||
}, {
|
}, {
|
||||||
'tp_size': 4,
|
'tp_size': 4,
|
||||||
'pp_size': 1,
|
'pp_size': 1,
|
||||||
'enable_fused_normalization': True,
|
'enable_all_optimization': True,
|
||||||
'use_lazy_init': False
|
'use_lazy_init': False,
|
||||||
|
'precision': 'fp32',
|
||||||
}])
|
}])
|
||||||
def run_bloom_test(test_config):
|
def run_bloom_test(test_config):
|
||||||
|
|
||||||
# TODO: add test_config for TP+DP after supporting & debugging it
|
# TODO: add test_config for TP+DP after supporting & debugging it
|
||||||
# {'tp_size': 2, 'pp_size': 1, 'enable_fused_normalization': True}
|
|
||||||
|
|
||||||
# TODO: add test_config for flash attention & jit operator after supporting
|
|
||||||
|
|
||||||
sub_model_zoo = model_zoo.get_sub_registry('transformers_bloom')
|
sub_model_zoo = model_zoo.get_sub_registry('transformers_bloom')
|
||||||
test_config['precision'] = 'float' # Do not use fp16/bf16 in testing
|
|
||||||
|
|
||||||
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
|
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
|
||||||
check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn, test_config)
|
check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn, test_config)
|
||||||
|
|
|
@ -37,11 +37,15 @@ def check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn,
|
||||||
|
|
||||||
# check last hidden state & loss
|
# check last hidden state & loss
|
||||||
if stage_manager is None or stage_manager.is_last_stage():
|
if stage_manager is None or stage_manager.is_last_stage():
|
||||||
|
if test_config['precision'] == 'fp32':
|
||||||
|
atol, rtol = 1e-5, 1e-3
|
||||||
|
else:
|
||||||
|
atol, rtol = 5e-3, 5e-3
|
||||||
|
|
||||||
if org_model.__class__.__name__ == 'ChatGLMModel':
|
if org_model.__class__.__name__ == 'ChatGLMModel':
|
||||||
check_output_hidden_state(org_output, sharded_output, stage_manager, atol=1e-5, rtol=1e-3, dim=1)
|
check_output_hidden_state(org_output, sharded_output, stage_manager, atol=atol, rtol=rtol, dim=1)
|
||||||
|
|
||||||
check_loss(org_loss, sharded_loss, atol=1e-6, rtol=1e-3)
|
check_loss(org_loss, sharded_loss, atol=atol, rtol=rtol)
|
||||||
|
|
||||||
# unwrap model
|
# unwrap model
|
||||||
if org_model.__class__.__name__ == 'ChatGLMModel':
|
if org_model.__class__.__name__ == 'ChatGLMModel':
|
||||||
|
@ -55,12 +59,16 @@ def check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn,
|
||||||
row_layer_for_check = ['encoder.layers[0].self_attention.query_key_value', 'embedding.word_embeddings']
|
row_layer_for_check = ['encoder.layers[0].self_attention.query_key_value', 'embedding.word_embeddings']
|
||||||
col_layer_for_check = ['encoder.layers[0].self_attention.dense']
|
col_layer_for_check = ['encoder.layers[0].self_attention.dense']
|
||||||
if stage_manager is None or stage_manager.is_first_stage():
|
if stage_manager is None or stage_manager.is_first_stage():
|
||||||
|
if test_config['precision'] == 'fp32':
|
||||||
|
atol, rtol = 1e-6, 1e-3
|
||||||
|
else:
|
||||||
|
atol, rtol = 5e-3, 5e-3
|
||||||
check_grad(chatglm_model,
|
check_grad(chatglm_model,
|
||||||
shard_chatglm_model,
|
shard_chatglm_model,
|
||||||
row_layer_for_check,
|
row_layer_for_check,
|
||||||
tp_group,
|
tp_group,
|
||||||
atol=1e-6,
|
atol=atol,
|
||||||
rtol=1e-3,
|
rtol=rtol,
|
||||||
dim=0,
|
dim=0,
|
||||||
verbose=False)
|
verbose=False)
|
||||||
|
|
||||||
|
@ -68,8 +76,8 @@ def check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn,
|
||||||
shard_chatglm_model,
|
shard_chatglm_model,
|
||||||
col_layer_for_check,
|
col_layer_for_check,
|
||||||
tp_group,
|
tp_group,
|
||||||
atol=1e-6,
|
atol=atol,
|
||||||
rtol=1e-3,
|
rtol=rtol,
|
||||||
dim=1,
|
dim=1,
|
||||||
verbose=False)
|
verbose=False)
|
||||||
|
|
||||||
|
@ -77,12 +85,16 @@ def check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn,
|
||||||
org_optimizer.step()
|
org_optimizer.step()
|
||||||
sharded_optimizer.step()
|
sharded_optimizer.step()
|
||||||
if stage_manager is None or stage_manager.is_first_stage():
|
if stage_manager is None or stage_manager.is_first_stage():
|
||||||
|
if test_config['precision'] == 'fp32':
|
||||||
|
atol, rtol = 1e-4, 1e-3
|
||||||
|
else:
|
||||||
|
atol, rtol = 5e-3, 5e-3
|
||||||
check_weight(chatglm_model,
|
check_weight(chatglm_model,
|
||||||
shard_chatglm_model,
|
shard_chatglm_model,
|
||||||
col_layer_for_check,
|
col_layer_for_check,
|
||||||
tp_group,
|
tp_group,
|
||||||
atol=1e-4,
|
atol=atol,
|
||||||
rtol=1e-3,
|
rtol=rtol,
|
||||||
dim=1,
|
dim=1,
|
||||||
verbose=False)
|
verbose=False)
|
||||||
|
|
||||||
|
@ -93,29 +105,29 @@ def check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn,
|
||||||
'tp_size': 2,
|
'tp_size': 2,
|
||||||
'pp_size': 2,
|
'pp_size': 2,
|
||||||
'num_microbatches': 4,
|
'num_microbatches': 4,
|
||||||
'enable_fused_normalization': True,
|
'enable_all_optimization': True,
|
||||||
'use_lazy_init': True
|
'use_lazy_init': True,
|
||||||
|
'precision': 'fp16',
|
||||||
|
'initial_scale': 1,
|
||||||
}, {
|
}, {
|
||||||
'tp_size': 1,
|
'tp_size': 1,
|
||||||
'pp_size': 2,
|
'pp_size': 2,
|
||||||
'num_microbatches': 4,
|
'num_microbatches': 4,
|
||||||
'enable_fused_normalization': False,
|
'enable_all_optimization': False,
|
||||||
'use_lazy_init': False
|
'use_lazy_init': False,
|
||||||
|
'precision': 'fp32',
|
||||||
}, {
|
}, {
|
||||||
'tp_size': 4,
|
'tp_size': 4,
|
||||||
'pp_size': 1,
|
'pp_size': 1,
|
||||||
'enable_fused_normalization': True,
|
'enable_all_optimization': True,
|
||||||
'use_lazy_init': False
|
'use_lazy_init': False,
|
||||||
|
'precision': 'fp32',
|
||||||
}])
|
}])
|
||||||
def run_chatglm_test(test_config):
|
def run_chatglm_test(test_config):
|
||||||
|
|
||||||
# TODO: add test_config for TP+DP after supporting & debugging it
|
# TODO: add test_config for TP+DP after supporting & debugging it
|
||||||
# {'tp_size': 2, 'pp_size': 1, 'enable_fused_normalization': True}
|
|
||||||
|
|
||||||
# TODO: add test_config for flash attention & jit operator after supporting
|
|
||||||
|
|
||||||
sub_model_zoo = model_zoo.get_sub_registry('transformers_chatglm')
|
sub_model_zoo = model_zoo.get_sub_registry('transformers_chatglm')
|
||||||
test_config['precision'] = 'float' # Do not use fp16/bf16 in testing
|
|
||||||
|
|
||||||
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
|
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
|
||||||
check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn, test_config)
|
check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn, test_config)
|
||||||
|
|
|
@ -63,22 +63,22 @@ def check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn,
|
||||||
row_layer_for_check = ['wte', 'h[0].mlp.c_proj']
|
row_layer_for_check = ['wte', 'h[0].mlp.c_proj']
|
||||||
|
|
||||||
# check grad
|
# check grad
|
||||||
|
if stage_manager is None or stage_manager.is_first_stage():
|
||||||
if test_config['precision'] == 'fp32':
|
if test_config['precision'] == 'fp32':
|
||||||
atol, rtol = 1e-4, 1e-3
|
atol, rtol = 1e-4, 1e-3
|
||||||
else:
|
else:
|
||||||
atol, rtol = 5e-3, 5e-3
|
atol, rtol = 5e-3, 5e-3
|
||||||
if stage_manager is None or stage_manager.is_first_stage():
|
|
||||||
check_grad(gpt2, sharded_gpt2, col_layer_for_check, tp_group, atol=atol, rtol=rtol, dim=1, verbose=False)
|
check_grad(gpt2, sharded_gpt2, col_layer_for_check, tp_group, atol=atol, rtol=rtol, dim=1, verbose=False)
|
||||||
check_grad(gpt2, sharded_gpt2, row_layer_for_check, tp_group, atol=atol, rtol=rtol, dim=0, verbose=False)
|
check_grad(gpt2, sharded_gpt2, row_layer_for_check, tp_group, atol=atol, rtol=rtol, dim=0, verbose=False)
|
||||||
|
|
||||||
# check weights after optimizer.step()
|
# check weights after optimizer.step()
|
||||||
org_optimizer.step()
|
org_optimizer.step()
|
||||||
sharded_optimizer.step()
|
sharded_optimizer.step()
|
||||||
|
if stage_manager is None or stage_manager.is_first_stage():
|
||||||
if test_config['precision'] == 'fp32':
|
if test_config['precision'] == 'fp32':
|
||||||
atol, rtol = 5e-3, 1e-3
|
atol, rtol = 5e-3, 1e-3
|
||||||
else:
|
else:
|
||||||
atol, rtol = 5e-3, 5e-3
|
atol, rtol = 5e-3, 5e-3
|
||||||
if stage_manager is None or stage_manager.is_first_stage():
|
|
||||||
check_weight(gpt2, sharded_gpt2, col_layer_for_check, tp_group, atol=atol, rtol=rtol, dim=1, verbose=False)
|
check_weight(gpt2, sharded_gpt2, col_layer_for_check, tp_group, atol=atol, rtol=rtol, dim=1, verbose=False)
|
||||||
|
|
||||||
torch.cuda.empty_cache()
|
torch.cuda.empty_cache()
|
||||||
|
|
|
@ -41,11 +41,15 @@ def check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn,
|
||||||
|
|
||||||
# check last hidden state & loss
|
# check last hidden state & loss
|
||||||
if stage_manager is None or stage_manager.is_last_stage():
|
if stage_manager is None or stage_manager.is_last_stage():
|
||||||
|
if test_config['precision'] == 'fp32':
|
||||||
|
atol, rtol = 1e-5, 1e-3
|
||||||
|
else:
|
||||||
|
atol, rtol = 5e-3, 5e-3
|
||||||
|
|
||||||
if org_model.__class__.__name__ == 'LlamaModel':
|
if org_model.__class__.__name__ == 'LlamaModel':
|
||||||
check_output_hidden_state(org_output, sharded_output, stage_manager, atol=1e-5, rtol=1e-3)
|
check_output_hidden_state(org_output, sharded_output, stage_manager, atol=atol, rtol=rtol)
|
||||||
|
|
||||||
check_loss(org_loss, sharded_loss, atol=1e-6, rtol=1e-3)
|
check_loss(org_loss, sharded_loss, atol=atol, rtol=rtol)
|
||||||
|
|
||||||
# unwrap model
|
# unwrap model
|
||||||
if org_model.__class__.__name__ == 'LlamaModel':
|
if org_model.__class__.__name__ == 'LlamaModel':
|
||||||
|
@ -59,20 +63,24 @@ def check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn,
|
||||||
row_layer_for_check = ['layers[0].self_attn.q_proj', 'embed_tokens']
|
row_layer_for_check = ['layers[0].self_attn.q_proj', 'embed_tokens']
|
||||||
col_layer_for_check = ['layers[0].self_attn.o_proj']
|
col_layer_for_check = ['layers[0].self_attn.o_proj']
|
||||||
if stage_manager is None or stage_manager.is_first_stage():
|
if stage_manager is None or stage_manager.is_first_stage():
|
||||||
|
if test_config['precision'] == 'fp32':
|
||||||
|
atol, rtol = 1e-6, 1e-4
|
||||||
|
else:
|
||||||
|
atol, rtol = 5e-3, 5e-3
|
||||||
check_grad(llama_model,
|
check_grad(llama_model,
|
||||||
shard_llama_model,
|
shard_llama_model,
|
||||||
row_layer_for_check,
|
row_layer_for_check,
|
||||||
tp_group,
|
tp_group,
|
||||||
atol=1e-6,
|
atol=atol,
|
||||||
rtol=1e-4,
|
rtol=rtol,
|
||||||
dim=0,
|
dim=0,
|
||||||
verbose=False)
|
verbose=False)
|
||||||
check_grad(llama_model,
|
check_grad(llama_model,
|
||||||
shard_llama_model,
|
shard_llama_model,
|
||||||
col_layer_for_check,
|
col_layer_for_check,
|
||||||
tp_group,
|
tp_group,
|
||||||
atol=1e-6,
|
atol=atol,
|
||||||
rtol=1e-4,
|
rtol=rtol,
|
||||||
dim=1,
|
dim=1,
|
||||||
verbose=False)
|
verbose=False)
|
||||||
|
|
||||||
|
@ -80,12 +88,16 @@ def check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn,
|
||||||
org_optimizer.step()
|
org_optimizer.step()
|
||||||
sharded_optimizer.step()
|
sharded_optimizer.step()
|
||||||
if stage_manager is None or stage_manager.is_first_stage():
|
if stage_manager is None or stage_manager.is_first_stage():
|
||||||
|
if test_config['precision'] == 'fp32':
|
||||||
|
atol, rtol = 1e-4, 1e-3
|
||||||
|
else:
|
||||||
|
atol, rtol = 5e-3, 5e-3
|
||||||
check_weight(llama_model,
|
check_weight(llama_model,
|
||||||
shard_llama_model,
|
shard_llama_model,
|
||||||
col_layer_for_check,
|
col_layer_for_check,
|
||||||
tp_group,
|
tp_group,
|
||||||
atol=1e-4,
|
atol=atol,
|
||||||
rtol=1e-3,
|
rtol=rtol,
|
||||||
dim=1,
|
dim=1,
|
||||||
verbose=False)
|
verbose=False)
|
||||||
|
|
||||||
|
@ -96,33 +108,34 @@ def check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn,
|
||||||
'tp_size': 2,
|
'tp_size': 2,
|
||||||
'pp_size': 2,
|
'pp_size': 2,
|
||||||
'num_microbatches': 2,
|
'num_microbatches': 2,
|
||||||
'enable_fused_normalization': True,
|
'enable_all_optimization': True,
|
||||||
'use_lazy_init': True
|
'use_lazy_init': True,
|
||||||
|
'precision': 'fp16',
|
||||||
|
'initial_scale': 1,
|
||||||
}, {
|
}, {
|
||||||
'tp_size': 1,
|
'tp_size': 1,
|
||||||
'pp_size': 2,
|
'pp_size': 2,
|
||||||
'num_microbatches': 4,
|
'num_microbatches': 4,
|
||||||
'use_lazy_init': False
|
'use_lazy_init': False,
|
||||||
|
'precision': 'fp32',
|
||||||
}, {
|
}, {
|
||||||
'tp_size': 4,
|
'tp_size': 4,
|
||||||
'pp_size': 1,
|
'pp_size': 1,
|
||||||
'enable_fused_normalization': True,
|
'enable_all_optimization': True,
|
||||||
'use_lazy_init': False
|
'use_lazy_init': False,
|
||||||
|
'precision': 'fp32',
|
||||||
}, {
|
}, {
|
||||||
'tp_size': 1,
|
'tp_size': 1,
|
||||||
'pp_size': 4,
|
'pp_size': 4,
|
||||||
'num_microbatches': 4,
|
'num_microbatches': 4,
|
||||||
'use_lazy_init': False
|
'use_lazy_init': False,
|
||||||
|
'precision': 'fp32',
|
||||||
}])
|
}])
|
||||||
def run_llama_test(test_config):
|
def run_llama_test(test_config):
|
||||||
|
|
||||||
# TODO: add test_config for TP+DP after supporting & debugging it
|
# TODO: add test_config for TP+DP after supporting & debugging it
|
||||||
# {'tp_size': 2, 'pp_size': 1, 'enable_fused_normalization': True}
|
|
||||||
|
|
||||||
# TODO: add test_config for flash attention & jit operator after supporting
|
|
||||||
|
|
||||||
sub_model_zoo = model_zoo.get_sub_registry('transformers_llama')
|
sub_model_zoo = model_zoo.get_sub_registry('transformers_llama')
|
||||||
test_config['precision'] = 'float' # Do not use fp16/bf16 in testing
|
|
||||||
|
|
||||||
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
|
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
|
||||||
check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn, test_config)
|
check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn, test_config)
|
||||||
|
|
|
@ -41,11 +41,14 @@ def check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn,
|
||||||
|
|
||||||
# check last hidden state & loss
|
# check last hidden state & loss
|
||||||
if stage_manager is None or stage_manager.is_last_stage():
|
if stage_manager is None or stage_manager.is_last_stage():
|
||||||
|
if test_config['precision'] == 'fp32':
|
||||||
|
atol, rtol = 1e-5, 1e-3
|
||||||
|
else:
|
||||||
|
atol, rtol = 5e-3, 5e-3
|
||||||
if org_model.__class__.__name__ == 'OPTModel':
|
if org_model.__class__.__name__ == 'OPTModel':
|
||||||
check_output_hidden_state(org_output, sharded_output, stage_manager, atol=1e-5, rtol=1e-3)
|
check_output_hidden_state(org_output, sharded_output, stage_manager, atol=atol, rtol=rtol)
|
||||||
|
|
||||||
check_loss(org_loss, sharded_loss, atol=1e-6, rtol=1e-3)
|
check_loss(org_loss, sharded_loss, atol=atol, rtol=rtol)
|
||||||
|
|
||||||
# unwrap model
|
# unwrap model
|
||||||
if org_model.__class__.__name__ == 'OPTModel':
|
if org_model.__class__.__name__ == 'OPTModel':
|
||||||
|
@ -56,23 +59,27 @@ def check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn,
|
||||||
shard_opt_model = sharded_model.unwrap().model
|
shard_opt_model = sharded_model.unwrap().model
|
||||||
|
|
||||||
# check grad
|
# check grad
|
||||||
row_layer_for_check = ['decoder.layers[0].self_attn.q_proj', 'decoder.embed_tokens']
|
row_layer_for_check = ['decoder.layers[0].self_attn.q_proj', 'decoder.embed_tokens'] # 'decoder.embed_tokens'
|
||||||
col_layer_for_check = ['decoder.layers[0].self_attn.out_proj']
|
col_layer_for_check = ['decoder.layers[0].self_attn.out_proj']
|
||||||
if stage_manager is None or stage_manager.is_first_stage():
|
if stage_manager is None or stage_manager.is_first_stage():
|
||||||
|
if test_config['precision'] == 'fp32':
|
||||||
|
atol, rtol = 1e-6, 1e-3
|
||||||
|
else:
|
||||||
|
atol, rtol = 3e-2, 3e-2
|
||||||
check_grad(opt_model,
|
check_grad(opt_model,
|
||||||
shard_opt_model,
|
shard_opt_model,
|
||||||
row_layer_for_check,
|
row_layer_for_check,
|
||||||
tp_group,
|
tp_group,
|
||||||
atol=1e-6,
|
atol=atol,
|
||||||
rtol=1e-3,
|
rtol=rtol,
|
||||||
dim=0,
|
dim=0,
|
||||||
verbose=False)
|
verbose=False)
|
||||||
check_grad(opt_model,
|
check_grad(opt_model,
|
||||||
shard_opt_model,
|
shard_opt_model,
|
||||||
col_layer_for_check,
|
col_layer_for_check,
|
||||||
tp_group,
|
tp_group,
|
||||||
atol=1e-6,
|
atol=atol,
|
||||||
rtol=1e-3,
|
rtol=rtol,
|
||||||
dim=1,
|
dim=1,
|
||||||
verbose=False)
|
verbose=False)
|
||||||
|
|
||||||
|
@ -80,12 +87,16 @@ def check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn,
|
||||||
org_optimizer.step()
|
org_optimizer.step()
|
||||||
sharded_optimizer.step()
|
sharded_optimizer.step()
|
||||||
if stage_manager is None or stage_manager.is_first_stage():
|
if stage_manager is None or stage_manager.is_first_stage():
|
||||||
|
if test_config['precision'] == 'fp32':
|
||||||
|
atol, rtol = 1e-3, 1e-3
|
||||||
|
else:
|
||||||
|
atol, rtol = 5e-3, 5e-3
|
||||||
check_weight(opt_model,
|
check_weight(opt_model,
|
||||||
shard_opt_model,
|
shard_opt_model,
|
||||||
col_layer_for_check,
|
col_layer_for_check,
|
||||||
tp_group,
|
tp_group,
|
||||||
atol=1e-3,
|
atol=atol,
|
||||||
rtol=1e-3,
|
rtol=rtol,
|
||||||
dim=1,
|
dim=1,
|
||||||
verbose=False)
|
verbose=False)
|
||||||
|
|
||||||
|
@ -96,29 +107,29 @@ def check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn,
|
||||||
'tp_size': 2,
|
'tp_size': 2,
|
||||||
'pp_size': 2,
|
'pp_size': 2,
|
||||||
'num_microbatches': 4,
|
'num_microbatches': 4,
|
||||||
'enable_fused_normalization': True,
|
'enable_all_optimization': True,
|
||||||
'use_lazy_init': True
|
'use_lazy_init': True,
|
||||||
|
'precision': 'fp16',
|
||||||
|
'initial_scale': 1,
|
||||||
}, {
|
}, {
|
||||||
'tp_size': 1,
|
'tp_size': 1,
|
||||||
'pp_size': 2,
|
'pp_size': 2,
|
||||||
'num_microbatches': 4,
|
'num_microbatches': 4,
|
||||||
'enable_fused_normalization': False,
|
'enable_all_optimization': False,
|
||||||
'use_lazy_init': False
|
'use_lazy_init': False,
|
||||||
|
'precision': 'fp32',
|
||||||
}, {
|
}, {
|
||||||
'tp_size': 4,
|
'tp_size': 4,
|
||||||
'pp_size': 1,
|
'pp_size': 1,
|
||||||
'enable_fused_normalization': True,
|
'enable_all_optimization': True,
|
||||||
'use_lazy_init': False
|
'use_lazy_init': False,
|
||||||
|
'precision': 'fp32',
|
||||||
}])
|
}])
|
||||||
def run_opt_test(test_config):
|
def run_opt_test(test_config):
|
||||||
|
|
||||||
# TODO: add test_config for TP+DP after supporting & debugging it
|
# TODO: add test_config for TP+DP after supporting & debugging it
|
||||||
# {'tp_size': 2, 'pp_size': 1, 'enable_fused_normalization': True}
|
|
||||||
|
|
||||||
# TODO: add test_config for flash attention & jit operator after supporting
|
|
||||||
|
|
||||||
sub_model_zoo = model_zoo.get_sub_registry('transformers_opt')
|
sub_model_zoo = model_zoo.get_sub_registry('transformers_opt')
|
||||||
test_config['precision'] = 'float' # Do not use fp16/bf16 in testing
|
|
||||||
|
|
||||||
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
|
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
|
||||||
check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn, test_config)
|
check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn, test_config)
|
||||||
|
|
|
@ -37,11 +37,15 @@ def check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn,
|
||||||
|
|
||||||
# check last hidden state & loss
|
# check last hidden state & loss
|
||||||
if stage_manager is None or stage_manager.is_last_stage():
|
if stage_manager is None or stage_manager.is_last_stage():
|
||||||
|
if test_config['precision'] == 'fp32':
|
||||||
|
atol, rtol = 1e-5, 1e-3
|
||||||
|
else:
|
||||||
|
atol, rtol = 5e-3, 5e-3
|
||||||
|
|
||||||
if org_model.__class__.__name__ == 'ViTModel':
|
if org_model.__class__.__name__ == 'ViTModel':
|
||||||
check_output_hidden_state(org_output, sharded_output, stage_manager, atol=1e-5, rtol=1e-3)
|
check_output_hidden_state(org_output, sharded_output, stage_manager, atol=atol, rtol=rtol)
|
||||||
|
|
||||||
check_loss(org_loss, sharded_loss, atol=1e-6, rtol=1e-3)
|
check_loss(org_loss, sharded_loss, atol=atol, rtol=rtol)
|
||||||
|
|
||||||
# unwrap model
|
# unwrap model
|
||||||
if org_model.__class__.__name__ == 'ViTModel':
|
if org_model.__class__.__name__ == 'ViTModel':
|
||||||
|
@ -55,20 +59,24 @@ def check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn,
|
||||||
row_layer_for_check = ['encoder.layer[0].attention.attention.query', 'embeddings.patch_embeddings.projection']
|
row_layer_for_check = ['encoder.layer[0].attention.attention.query', 'embeddings.patch_embeddings.projection']
|
||||||
col_layer_for_check = ['encoder.layer[0].attention.output.dense']
|
col_layer_for_check = ['encoder.layer[0].attention.output.dense']
|
||||||
if stage_manager is None or stage_manager.is_first_stage():
|
if stage_manager is None or stage_manager.is_first_stage():
|
||||||
|
if test_config['precision'] == 'fp32':
|
||||||
|
atol, rtol = 1e-5, 1e-3
|
||||||
|
else:
|
||||||
|
atol, rtol = 5e-3, 5e-3
|
||||||
check_grad(vit_model,
|
check_grad(vit_model,
|
||||||
shard_vit_model,
|
shard_vit_model,
|
||||||
row_layer_for_check,
|
row_layer_for_check,
|
||||||
tp_group,
|
tp_group,
|
||||||
atol=1e-5,
|
atol=atol,
|
||||||
rtol=1e-3,
|
rtol=rtol,
|
||||||
dim=0,
|
dim=0,
|
||||||
verbose=False)
|
verbose=False)
|
||||||
check_grad(vit_model,
|
check_grad(vit_model,
|
||||||
shard_vit_model,
|
shard_vit_model,
|
||||||
col_layer_for_check,
|
col_layer_for_check,
|
||||||
tp_group,
|
tp_group,
|
||||||
atol=1e-5,
|
atol=atol,
|
||||||
rtol=1e-3,
|
rtol=rtol,
|
||||||
dim=1,
|
dim=1,
|
||||||
verbose=False)
|
verbose=False)
|
||||||
|
|
||||||
|
@ -76,12 +84,16 @@ def check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn,
|
||||||
org_optimizer.step()
|
org_optimizer.step()
|
||||||
sharded_optimizer.step()
|
sharded_optimizer.step()
|
||||||
if stage_manager is None or stage_manager.is_first_stage():
|
if stage_manager is None or stage_manager.is_first_stage():
|
||||||
|
if test_config['precision'] == 'fp32':
|
||||||
|
atol, rtol = 5e-3, 1e-3
|
||||||
|
else:
|
||||||
|
atol, rtol = 5e-3, 5e-3
|
||||||
check_weight(vit_model,
|
check_weight(vit_model,
|
||||||
shard_vit_model,
|
shard_vit_model,
|
||||||
col_layer_for_check,
|
col_layer_for_check,
|
||||||
tp_group,
|
tp_group,
|
||||||
atol=5e-3,
|
atol=atol,
|
||||||
rtol=1e-3,
|
rtol=rtol,
|
||||||
dim=1,
|
dim=1,
|
||||||
verbose=False)
|
verbose=False)
|
||||||
|
|
||||||
|
@ -92,30 +104,30 @@ def check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn,
|
||||||
'tp_size': 2,
|
'tp_size': 2,
|
||||||
'pp_size': 2,
|
'pp_size': 2,
|
||||||
'num_microbatches': 4,
|
'num_microbatches': 4,
|
||||||
'enable_fused_normalization': True,
|
'enable_all_optimization': True,
|
||||||
'use_lazy_init': False
|
'use_lazy_init': False,
|
||||||
|
'precision': 'fp16',
|
||||||
|
'initial_scale': 1,
|
||||||
}, {
|
}, {
|
||||||
'tp_size': 1,
|
'tp_size': 1,
|
||||||
'pp_size': 2,
|
'pp_size': 2,
|
||||||
'num_microbatches': 4,
|
'num_microbatches': 4,
|
||||||
'enable_fused_normalization': False,
|
'enable_all_optimization': False,
|
||||||
'use_lazy_init': False
|
'use_lazy_init': False,
|
||||||
|
'precision': 'fp32',
|
||||||
}, {
|
}, {
|
||||||
'tp_size': 4,
|
'tp_size': 4,
|
||||||
'pp_size': 1,
|
'pp_size': 1,
|
||||||
'enable_fused_normalization': True,
|
'enable_all_optimization': True,
|
||||||
'use_lazy_init': False
|
'use_lazy_init': False,
|
||||||
|
'precision': 'fp32',
|
||||||
}])
|
}])
|
||||||
def run_vit_test(test_config):
|
def run_vit_test(test_config):
|
||||||
|
|
||||||
# TODO: add test_config for TP+DP after supporting & debugging it
|
# TODO: add test_config for TP+DP after supporting & debugging it
|
||||||
# {'tp_size': 2, 'pp_size': 1, 'enable_fused_normalization': True}
|
|
||||||
|
|
||||||
# TODO: add test_config for flash attention & jit operator after supporting
|
|
||||||
# TODO: fix bug when settign lazy_init for Conv2D Layers in ViT models
|
# TODO: fix bug when settign lazy_init for Conv2D Layers in ViT models
|
||||||
|
|
||||||
sub_model_zoo = model_zoo.get_sub_registry('transformers_vit')
|
sub_model_zoo = model_zoo.get_sub_registry('transformers_vit')
|
||||||
test_config['precision'] = 'float' # Do not use fp16/bf16 in testing
|
|
||||||
|
|
||||||
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
|
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
|
||||||
check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn, test_config)
|
check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn, test_config)
|
||||||
|
|
Loading…
Reference in New Issue