mirror of https://github.com/hpcaitech/ColossalAI
[hotfix] hotfix Gemini for no leaf modules bug (#2043)
parent
384cd26314
commit
31c644027b
|
@ -1,10 +1,10 @@
|
||||||
from typing import Dict, Iterator, Optional, Tuple, Union
|
from typing import Any, Dict, Iterator, Optional, Tuple, Union
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
from torch import nn
|
from torch import nn
|
||||||
|
|
||||||
from colossalai.nn.parallel.layers import ColoEmbedding, ColoLinear, register_colo_module
|
from colossalai.nn.parallel.layers import ColoEmbedding, ColoLinear, register_colo_module
|
||||||
from colossalai.tensor import ColoParameter, ColoTensor, ProcessGroup, ShardSpec
|
from colossalai.tensor import ColoParameter, ColoTensor, ProcessGroup
|
||||||
|
|
||||||
from .utils import InsertPostInitMethodToModuleSubClasses
|
from .utils import InsertPostInitMethodToModuleSubClasses
|
||||||
|
|
||||||
|
@ -26,6 +26,34 @@ def _named_params_with_replica(
|
||||||
yield name, val
|
yield name, val
|
||||||
|
|
||||||
|
|
||||||
|
def _convert_to_coloparam(param: torch.nn.Parameter,
|
||||||
|
device: torch.device,
|
||||||
|
dtype=torch.float,
|
||||||
|
default_pg: Optional[ProcessGroup] = None,
|
||||||
|
default_dist_spec: Optional[Any] = None) -> ColoParameter:
|
||||||
|
|
||||||
|
if isinstance(param, ColoParameter):
|
||||||
|
return param
|
||||||
|
# detaching tensor is necessary for optimizers.
|
||||||
|
requires_grad = param.requires_grad
|
||||||
|
# param is the global tensor.
|
||||||
|
colo_param = ColoParameter(param.to(device=device, dtype=dtype), requires_grad=requires_grad)
|
||||||
|
|
||||||
|
# if default_shard_plan exists, shard the param during initialization.
|
||||||
|
# This can reduce the model size after initialization.
|
||||||
|
# NOTE() embedding usually can not be correctly sharded. So I use except to handle
|
||||||
|
# the param that can not be sharded by the default plan
|
||||||
|
if default_pg is not None:
|
||||||
|
colo_param.set_process_group(default_pg)
|
||||||
|
|
||||||
|
if default_dist_spec is not None:
|
||||||
|
try:
|
||||||
|
colo_param.set_dist_spec(default_dist_spec)
|
||||||
|
except:
|
||||||
|
pass
|
||||||
|
return colo_param
|
||||||
|
|
||||||
|
|
||||||
def ColoModulize(module):
|
def ColoModulize(module):
|
||||||
"""
|
"""
|
||||||
Replacing the parameters() and named_parameters() with our customized ones
|
Replacing the parameters() and named_parameters() with our customized ones
|
||||||
|
@ -94,26 +122,8 @@ class ColoInitContext(InsertPostInitMethodToModuleSubClasses):
|
||||||
if param in replaced_tensors:
|
if param in replaced_tensors:
|
||||||
colo_param = replaced_tensors[param]
|
colo_param = replaced_tensors[param]
|
||||||
else:
|
else:
|
||||||
# detaching tensor is necessary for optimizers.
|
colo_param = _convert_to_coloparam(param, self._device, self._dtype, self._default_pg,
|
||||||
requires_grad = param.requires_grad
|
self._default_dist_spec)
|
||||||
|
|
||||||
# param is the global tensor.
|
|
||||||
colo_param = ColoParameter(param.to(device=self._device, dtype=self._dtype),
|
|
||||||
requires_grad=requires_grad)
|
|
||||||
|
|
||||||
# if default_shard_plan exists, shard the param during initialization.
|
|
||||||
# This can reduce the model size after initialization.
|
|
||||||
# NOTE() embedding usually can not be correctly sharded. So I use except to handle
|
|
||||||
# the param that can not be sharded by the default plan
|
|
||||||
if self._default_pg is not None:
|
|
||||||
colo_param.set_process_group(self._default_pg)
|
|
||||||
|
|
||||||
if self._default_dist_spec is not None:
|
|
||||||
try:
|
|
||||||
colo_param.set_dist_spec(self._default_dist_spec)
|
|
||||||
except:
|
|
||||||
pass
|
|
||||||
|
|
||||||
replaced_tensors[param] = colo_param
|
replaced_tensors[param] = colo_param
|
||||||
delattr(submodule, param_name)
|
delattr(submodule, param_name)
|
||||||
setattr(submodule, param_name, colo_param)
|
setattr(submodule, param_name, colo_param)
|
||||||
|
@ -121,3 +131,39 @@ class ColoInitContext(InsertPostInitMethodToModuleSubClasses):
|
||||||
|
|
||||||
module.to(self._device)
|
module.to(self._device)
|
||||||
ColoModulize(module)
|
ColoModulize(module)
|
||||||
|
|
||||||
|
|
||||||
|
def post_process_colo_init_ctx(model: torch.nn.Module,
|
||||||
|
device: torch.device = torch.device('cpu'),
|
||||||
|
dtype: torch.dtype = torch.float,
|
||||||
|
default_pg: Optional[ProcessGroup] = None,
|
||||||
|
default_dist_spec=None):
|
||||||
|
"""post_process_colo_init_ctx
|
||||||
|
|
||||||
|
This function is called after `ColoInitContext`.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
model (torch.nn.module): the model
|
||||||
|
device (torch.device, optional): device type of the model params. Defaults to torch.device('cpu').
|
||||||
|
dtype (torch.dtype, optional): dtype of the model params. Defaults to torch.float.
|
||||||
|
default_pg (Optional[ProcessGroup], optional): default process group. Defaults to None. Inidicates a DP-only process group.
|
||||||
|
default_dist_spec (Any, optional): default dist spec of params. Defaults to None.
|
||||||
|
|
||||||
|
Raises:
|
||||||
|
RuntimeError: raise error if
|
||||||
|
"""
|
||||||
|
|
||||||
|
torch_params = []
|
||||||
|
for n, p in model.named_parameters():
|
||||||
|
if not isinstance(p, ColoParameter):
|
||||||
|
print(f"{n} is not a ColoParameter. We are going to converting it to ColoParameter")
|
||||||
|
torch_params.append((n, p))
|
||||||
|
|
||||||
|
for (n, param) in torch_params:
|
||||||
|
delattr(model, n)
|
||||||
|
setattr(model, n, _convert_to_coloparam(param, device, dtype, default_pg, default_dist_spec))
|
||||||
|
|
||||||
|
del torch_params
|
||||||
|
for n, p in model.named_parameters():
|
||||||
|
if not isinstance(p, ColoTensor):
|
||||||
|
raise RuntimeError
|
||||||
|
|
|
@ -15,10 +15,11 @@ from colossalai.gemini.gemini_mgr import GeminiManager
|
||||||
from colossalai.nn.optimizer import HybridAdam
|
from colossalai.nn.optimizer import HybridAdam
|
||||||
from colossalai.nn.optimizer.zero_optimizer import ZeroOptimizer
|
from colossalai.nn.optimizer.zero_optimizer import ZeroOptimizer
|
||||||
from colossalai.nn.parallel import ZeroDDP
|
from colossalai.nn.parallel import ZeroDDP
|
||||||
|
from colossalai.tensor import ColoParameter, ColoTensor
|
||||||
from colossalai.testing import parameterize, rerun_if_address_is_in_use
|
from colossalai.testing import parameterize, rerun_if_address_is_in_use
|
||||||
from colossalai.utils import free_port
|
from colossalai.utils import free_port
|
||||||
from colossalai.utils.cuda import get_current_device
|
from colossalai.utils.cuda import get_current_device
|
||||||
from colossalai.utils.model.colo_init_context import ColoInitContext
|
from colossalai.utils.model.colo_init_context import ColoInitContext, post_process_colo_init_ctx
|
||||||
from tests.components_to_test import run_fwd_bwd
|
from tests.components_to_test import run_fwd_bwd
|
||||||
from tests.components_to_test.registry import non_distributed_component_funcs
|
from tests.components_to_test.registry import non_distributed_component_funcs
|
||||||
from tests.test_tensor.common_utils import debug_print, set_seed
|
from tests.test_tensor.common_utils import debug_print, set_seed
|
||||||
|
@ -40,8 +41,7 @@ def check_param(model: ZeroDDP, torch_model: torch.nn.Module):
|
||||||
|
|
||||||
|
|
||||||
# 'gpt2', 'bert',
|
# 'gpt2', 'bert',
|
||||||
TEST_MODELS = ['gpt2', 'bert']
|
TEST_MODELS = ['no_leaf_module', 'gpt2', 'bert', 'simple_net', 'nested_model', 'repeated_computed_layers']
|
||||||
EXAMPLE_MODELS = ['simple_net']
|
|
||||||
|
|
||||||
|
|
||||||
@parameterize('placement_policy', ['cuda', 'cpu', 'auto', 'const'])
|
@parameterize('placement_policy', ['cuda', 'cpu', 'auto', 'const'])
|
||||||
|
@ -57,8 +57,12 @@ def exam_model_step(placement_policy, model_name: str):
|
||||||
torch_model, torch_optim = convert_to_apex_amp(torch_model, torch_optim, amp_config)
|
torch_model, torch_optim = convert_to_apex_amp(torch_model, torch_optim, amp_config)
|
||||||
torch_model = DDP(torch_model, device_ids=[dist.get_rank()])
|
torch_model = DDP(torch_model, device_ids=[dist.get_rank()])
|
||||||
|
|
||||||
with ColoInitContext(device=get_current_device()):
|
init_dev = get_current_device()
|
||||||
|
with ColoInitContext(device=init_dev):
|
||||||
model = model_builder()
|
model = model_builder()
|
||||||
|
|
||||||
|
post_process_colo_init_ctx(model, device=init_dev)
|
||||||
|
|
||||||
for torch_p, p in zip(torch_model.parameters(), model.parameters()):
|
for torch_p, p in zip(torch_model.parameters(), model.parameters()):
|
||||||
p.data.copy_(torch_p.data)
|
p.data.copy_(torch_p.data)
|
||||||
|
|
||||||
|
@ -99,7 +103,7 @@ def exam_model_step(placement_policy, model_name: str):
|
||||||
|
|
||||||
|
|
||||||
@parameterize('placement_policy', ['cuda', 'cpu'])
|
@parameterize('placement_policy', ['cuda', 'cpu'])
|
||||||
@parameterize('model_name', EXAMPLE_MODELS)
|
@parameterize('model_name', TEST_MODELS)
|
||||||
def exam_tiny_example(placement_policy, model_name: str):
|
def exam_tiny_example(placement_policy, model_name: str):
|
||||||
set_seed(2008)
|
set_seed(2008)
|
||||||
get_components_func = non_distributed_component_funcs.get_callable(model_name)
|
get_components_func = non_distributed_component_funcs.get_callable(model_name)
|
||||||
|
@ -111,8 +115,12 @@ def exam_tiny_example(placement_policy, model_name: str):
|
||||||
torch_model, torch_optim = convert_to_apex_amp(torch_model, torch_optim, amp_config)
|
torch_model, torch_optim = convert_to_apex_amp(torch_model, torch_optim, amp_config)
|
||||||
torch_model = DDP(torch_model, device_ids=[dist.get_rank()])
|
torch_model = DDP(torch_model, device_ids=[dist.get_rank()])
|
||||||
|
|
||||||
with ColoInitContext(device=get_current_device()):
|
init_dev = get_current_device()
|
||||||
|
with ColoInitContext(device=init_dev):
|
||||||
model = model_builder()
|
model = model_builder()
|
||||||
|
|
||||||
|
post_process_colo_init_ctx(model, device=init_dev)
|
||||||
|
|
||||||
for torch_p, p in zip(torch_model.parameters(), model.parameters()):
|
for torch_p, p in zip(torch_model.parameters(), model.parameters()):
|
||||||
p.data.copy_(torch_p.data)
|
p.data.copy_(torch_p.data)
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue