[NFC] polish code format

[NFC] polish code format
pull/2741/head
binmakeswell 2023-02-15 23:21:36 +08:00 committed by GitHub
commit 30aee9c45d
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
8 changed files with 221 additions and 214 deletions

View File

@ -1,7 +1,8 @@
import click
from .launcher import run
from .check import check
from .benchmark import benchmark
from .check import check
from .launcher import run
class Arguments():

View File

@ -1,7 +1,9 @@
import click
from .run import launch_multi_processes
from colossalai.context import Config
from .run import launch_multi_processes
@click.command(help="Launch distributed training on a single node or multiple nodes",
context_settings=dict(ignore_unknown_options=True))

View File

@ -1,129 +1,129 @@
import torch
import torch.distributed as dist
from colossalai.context.parallel_mode import ParallelMode
from colossalai.context.singleton_meta import SingletonMeta
from colossalai.tensor import ProcessGroup
from typing import Tuple
def _check_sanity():
from colossalai.core import global_context as gpc
if gpc.tensor_parallel_size > 1 or gpc.pipeline_parallel_size > 1:
raise NotImplementedError("Moe is not compatible with tensor or "
"pipeline parallel at present.")
class MoeParallelInfo:
"""Moe parallelism information, storing parallel sizes and groups.
"""
def __init__(self, ep_size: int, dp_size: int):
_check_sanity()
self.ep_size = ep_size
self.dp_size = dp_size
self.pg = ProcessGroup(tp_degree=ep_size, dp_degree=dp_size)
self.ep_group = self.pg.tp_process_group()
self.dp_group = self.pg.dp_process_group()
class MoeContext(metaclass=SingletonMeta):
"""MoE parallel context manager. This class manages different
parallel groups in MoE context and MoE loss in training.
"""
def __init__(self):
self.world_size = 1
# Users may want to set maximum expert parallel size smaller than the world size
# since very low bandwidth across nodes may constrain the performance of MoE
# When we have a maximum expert parallel size, we have a minimum data parallel size naturally
self.max_ep_size = 1
self.min_dp_size = 1
self.aux_loss = None
self.use_kernel_optim = True
self.has_setup = False
self._parallel_info_dict = dict()
@property
def parallel_info_dict(self):
return self._parallel_info_dict
@property
def is_initialized(self):
return self.has_setup
def setup(self, seed: int, use_kernel_optim: bool = True):
assert not self.is_initialized, "MoE distributed context shouldn't be set up again"
_check_sanity()
assert torch.cuda.is_available(), "MoE requires to enable CUDA first"
self.world_size = dist.get_world_size()
from colossalai.core import global_context as gpc
self.max_ep_size = gpc.config.get('max_ep_size', self.world_size)
assert self.world_size % self.max_ep_size == 0, \
"Maximum epxert parallel size must be a factor of the number of GPUs"
self.min_dp_size = self.world_size // self.max_ep_size
# Enabling kernel optimization may raise error in some cases
# Users can close kernel optimization manually
self.use_kernel_optim = use_kernel_optim
from .random import moe_set_seed
moe_set_seed(seed)
self.has_setup = True
def get_info(self, num_experts: int) -> Tuple[int, MoeParallelInfo]:
"""Calculate the Data Parallel Group and Expert Parallel Group.
Parameters
----------
num_experts : int
The number experts
Returns
-------
int, MoeParallelInfo
number of local experts, the MoeParallelInfo of the current ep_size
"""
gt_flag = num_experts % self.max_ep_size == 0 # check whether num_experts is greater
lt_flag = self.max_ep_size % num_experts == 0 # check whether num_experts is less
assert gt_flag or lt_flag, "Automatic experts placement dose not not support expert number" \
" is not a multiple of ep size or vice versa."
# If the number of experts is greater than maximum expert parallel size. a.k.a ep_size,
# there are multiple experts in each GPU and each GPU has different experts
# So it's data parallel size is 1
# Otherwise, there is only one expert in each GPU
# The data parallel size should be calculated
dp_size = 1 if gt_flag else self.max_ep_size // num_experts
ep_size = self.max_ep_size // dp_size
# Calculate the number of experts for each GPU
num_local_experts = 1 if lt_flag else num_experts // self.max_ep_size
# Don't forget to multiply minimum data parallel size
dp_size *= self.min_dp_size
if not (ep_size in self.parallel_info_dict):
self.parallel_info_dict[ep_size] = MoeParallelInfo(ep_size, dp_size)
return num_local_experts, self.parallel_info_dict[ep_size]
def set_kernel_not_use(self):
self.use_kernel_optim = False
def reset_loss(self):
self.aux_loss = 0
def add_loss(self, loss):
self.aux_loss += loss
def get_loss(self):
return self.aux_loss
MOE_CONTEXT = MoeContext()
from typing import Tuple
import torch
import torch.distributed as dist
from colossalai.context.parallel_mode import ParallelMode
from colossalai.context.singleton_meta import SingletonMeta
from colossalai.tensor import ProcessGroup
def _check_sanity():
from colossalai.core import global_context as gpc
if gpc.tensor_parallel_size > 1 or gpc.pipeline_parallel_size > 1:
raise NotImplementedError("Moe is not compatible with tensor or "
"pipeline parallel at present.")
class MoeParallelInfo:
"""Moe parallelism information, storing parallel sizes and groups.
"""
def __init__(self, ep_size: int, dp_size: int):
_check_sanity()
self.ep_size = ep_size
self.dp_size = dp_size
self.pg = ProcessGroup(tp_degree=ep_size, dp_degree=dp_size)
self.ep_group = self.pg.tp_process_group()
self.dp_group = self.pg.dp_process_group()
class MoeContext(metaclass=SingletonMeta):
"""MoE parallel context manager. This class manages different
parallel groups in MoE context and MoE loss in training.
"""
def __init__(self):
self.world_size = 1
# Users may want to set maximum expert parallel size smaller than the world size
# since very low bandwidth across nodes may constrain the performance of MoE
# When we have a maximum expert parallel size, we have a minimum data parallel size naturally
self.max_ep_size = 1
self.min_dp_size = 1
self.aux_loss = None
self.use_kernel_optim = True
self.has_setup = False
self._parallel_info_dict = dict()
@property
def parallel_info_dict(self):
return self._parallel_info_dict
@property
def is_initialized(self):
return self.has_setup
def setup(self, seed: int, use_kernel_optim: bool = True):
assert not self.is_initialized, "MoE distributed context shouldn't be set up again"
_check_sanity()
assert torch.cuda.is_available(), "MoE requires to enable CUDA first"
self.world_size = dist.get_world_size()
from colossalai.core import global_context as gpc
self.max_ep_size = gpc.config.get('max_ep_size', self.world_size)
assert self.world_size % self.max_ep_size == 0, \
"Maximum epxert parallel size must be a factor of the number of GPUs"
self.min_dp_size = self.world_size // self.max_ep_size
# Enabling kernel optimization may raise error in some cases
# Users can close kernel optimization manually
self.use_kernel_optim = use_kernel_optim
from .random import moe_set_seed
moe_set_seed(seed)
self.has_setup = True
def get_info(self, num_experts: int) -> Tuple[int, MoeParallelInfo]:
"""Calculate the Data Parallel Group and Expert Parallel Group.
Parameters
----------
num_experts : int
The number experts
Returns
-------
int, MoeParallelInfo
number of local experts, the MoeParallelInfo of the current ep_size
"""
gt_flag = num_experts % self.max_ep_size == 0 # check whether num_experts is greater
lt_flag = self.max_ep_size % num_experts == 0 # check whether num_experts is less
assert gt_flag or lt_flag, "Automatic experts placement dose not not support expert number" \
" is not a multiple of ep size or vice versa."
# If the number of experts is greater than maximum expert parallel size. a.k.a ep_size,
# there are multiple experts in each GPU and each GPU has different experts
# So it's data parallel size is 1
# Otherwise, there is only one expert in each GPU
# The data parallel size should be calculated
dp_size = 1 if gt_flag else self.max_ep_size // num_experts
ep_size = self.max_ep_size // dp_size
# Calculate the number of experts for each GPU
num_local_experts = 1 if lt_flag else num_experts // self.max_ep_size
# Don't forget to multiply minimum data parallel size
dp_size *= self.min_dp_size
if not (ep_size in self.parallel_info_dict):
self.parallel_info_dict[ep_size] = MoeParallelInfo(ep_size, dp_size)
return num_local_experts, self.parallel_info_dict[ep_size]
def set_kernel_not_use(self):
self.use_kernel_optim = False
def reset_loss(self):
self.aux_loss = 0
def add_loss(self, loss):
self.aux_loss += loss
def get_loss(self):
return self.aux_loss
MOE_CONTEXT = MoeContext()

View File

@ -2,10 +2,11 @@ import math
import torch.distributed as dist
from colossalai.registry import DIST_GROUP_INITIALIZER
from .process_group_initializer import ProcessGroupInitializer
from ..parallel_mode import ParallelMode
from colossalai.global_variables import tensor_parallel_env as env
from colossalai.registry import DIST_GROUP_INITIALIZER
from ..parallel_mode import ParallelMode
from .process_group_initializer import ProcessGroupInitializer
def _check_summa_env_var(summa_dim):

View File

@ -4,8 +4,9 @@
from torch import distributed as dist
from colossalai.registry import DIST_GROUP_INITIALIZER
from .process_group_initializer import ProcessGroupInitializer
from ..parallel_mode import ParallelMode
from .process_group_initializer import ProcessGroupInitializer
@DIST_GROUP_INITIALIZER.register_module

View File

@ -3,9 +3,10 @@
import torch.distributed as dist
from colossalai.registry import DIST_GROUP_INITIALIZER
from ..parallel_mode import ParallelMode
from .initializer_tensor import Initializer_Tensor
from .process_group_initializer import ProcessGroupInitializer
from ..parallel_mode import ParallelMode
@DIST_GROUP_INITIALIZER.register_module

View File

@ -1,29 +1,30 @@
import torch.distributed as dist
import torch.nn as nn
from torch._utils import _flatten_dense_tensors, _unflatten_dense_tensors
from typing import Iterable
def bucket_allreduce(param_list: Iterable[nn.Parameter], group=None):
# get communication world size
comm_size = dist.get_world_size(group)
# bucketize and all-reduce
buckets = {}
# Pack the buckets.
for param in param_list:
if param.requires_grad and param.grad is not None:
tp = param.data.type()
if tp not in buckets:
buckets[tp] = []
buckets[tp].append(param)
# For each bucket, all-reduce and copy all-reduced grads.
for tp in buckets:
bucket = buckets[tp]
grads = [param.grad.data for param in bucket]
coalesced = _flatten_dense_tensors(grads)
coalesced /= comm_size
dist.all_reduce(coalesced, group=group)
for buf, synced in zip(grads, _unflatten_dense_tensors(coalesced, grads)):
buf.copy_(synced)
from typing import Iterable
import torch.distributed as dist
import torch.nn as nn
from torch._utils import _flatten_dense_tensors, _unflatten_dense_tensors
def bucket_allreduce(param_list: Iterable[nn.Parameter], group=None):
# get communication world size
comm_size = dist.get_world_size(group)
# bucketize and all-reduce
buckets = {}
# Pack the buckets.
for param in param_list:
if param.requires_grad and param.grad is not None:
tp = param.data.type()
if tp not in buckets:
buckets[tp] = []
buckets[tp].append(param)
# For each bucket, all-reduce and copy all-reduced grads.
for tp in buckets:
bucket = buckets[tp]
grads = [param.grad.data for param in bucket]
coalesced = _flatten_dense_tensors(grads)
coalesced /= comm_size
dist.all_reduce(coalesced, group=group)
for buf, synced in zip(grads, _unflatten_dense_tensors(coalesced, grads)):
buf.copy_(synced)

View File

@ -1,48 +1,48 @@
from enum import EnumMeta
class GeminiMemoryManager(object):
def __init__(self, states_cls: EnumMeta):
super().__init__()
self.states_cls = states_cls
self._cnter = 0 # the counter of instances
self.total_mem = dict()
self.state_mem = dict()
self.state_mem['cpu'] = dict()
self.state_mem['cuda'] = dict()
self.reset()
@property
def total_number(self):
return self._cnter
def reset(self):
self._cnter = 0 # the counter of instances
self.total_mem['cpu'] = 0 # memory occupation of instances in cpu
self.total_mem['cuda'] = 0 # memory of occupation of instances in cuda
# memory conditions for all states
for state in self.states_cls:
self.state_mem['cpu'][state] = 0
self.state_mem['cuda'][state] = 0
def register_new_instance(self):
self._cnter += 1
def delete_instance(self):
self._cnter -= 1
def print_info(self):
print(f"Total number: {self.total_number}",
f"Total CPU memory occupation: {self.total_mem['cpu']}",
f"Total CUDA memory occupation: {self.total_mem['cuda']}\n",
sep='\n')
for state in self.states_cls:
print(f"{state}: CPU memory occupation: {self.state_mem['cpu'][state]}",
f"{state}: CUDA memory occupation: {self.state_mem['cuda'][state]}\n",
sep='\n')
from enum import EnumMeta
class GeminiMemoryManager(object):
def __init__(self, states_cls: EnumMeta):
super().__init__()
self.states_cls = states_cls
self._cnter = 0 # the counter of instances
self.total_mem = dict()
self.state_mem = dict()
self.state_mem['cpu'] = dict()
self.state_mem['cuda'] = dict()
self.reset()
@property
def total_number(self):
return self._cnter
def reset(self):
self._cnter = 0 # the counter of instances
self.total_mem['cpu'] = 0 # memory occupation of instances in cpu
self.total_mem['cuda'] = 0 # memory of occupation of instances in cuda
# memory conditions for all states
for state in self.states_cls:
self.state_mem['cpu'][state] = 0
self.state_mem['cuda'][state] = 0
def register_new_instance(self):
self._cnter += 1
def delete_instance(self):
self._cnter -= 1
def print_info(self):
print(f"Total number: {self.total_number}",
f"Total CPU memory occupation: {self.total_mem['cpu']}",
f"Total CUDA memory occupation: {self.total_mem['cuda']}\n",
sep='\n')
for state in self.states_cls:
print(f"{state}: CPU memory occupation: {self.state_mem['cpu'][state]}",
f"{state}: CUDA memory occupation: {self.state_mem['cuda'][state]}\n",
sep='\n')