[fx/profiler] debug the fx.profiler / add an example test script for fx.profiler (#1730)

* [fx/profiler] add test.

* [fx] fix file names.

* [fx] add docstring and comment.

* [fx] polish profiler.py.

* [fx] fix import errors.

* [fx] fix profiler.

* [fx] fix names.
pull/1743/head
Super Daniel 2022-10-19 14:24:51 +08:00 committed by GitHub
parent eee84908d4
commit 30874f1692
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 283 additions and 23 deletions

View File

@ -1,6 +1,6 @@
import torch
__all__ = ['ALIAS_ATEN', 'INPLACE_NEW', 'INPLACE_MATH_ATEN', 'CLONE_ATEN']
__all__ = ['ALIAS_ATEN', 'INPLACE_NEW', 'INPLACE_MATH_ATEN', 'CLONE_ATEN', 'RELU_LIKE_OPS', 'RELU_LIKE_MOD']
aten = torch.ops.aten
@ -30,3 +30,15 @@ INPLACE_MATH_ATEN = [
CLONE_ATEN = [
aten.clone.default,
]
# See illustrations in
# https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/fx/profiler/constants.py
OUTPUT_SAVED_OPS = [
torch.nn.functional.relu,
torch.nn.functional.softmax,
]
OUTPUT_SAVED_MOD = [
torch.nn.ReLU,
torch.nn.Softmax,
]

View File

@ -5,6 +5,9 @@ from torch.fx import GraphModule, Node
from .._compatibility import compatibility, is_compatible_with_meta
if is_compatible_with_meta():
from .constants import OUTPUT_SAVED_MOD, OUTPUT_SAVED_OPS
__all__ = [
'activation_size', 'parameter_size', 'is_inplace', "calculate_fwd_in", "calculate_fwd_tmp", "calculate_fwd_out"
]
@ -71,14 +74,35 @@ def calculate_fwd_tmp(n: Node) -> int:
fwd_tmp (int): the result of `fwd_tmp`
"""
def is_relu_node(n: Node) -> bool:
def is_relu_like_node(n: Node) -> bool:
"""Check if a node is a ReLU-like node.
ReLU-like nodes have the following properties:
- They are either `call_function` or `call_module`
- Their output tensors are directly saved for backward
- Their input tensors are not saved for backward
An example is `torch.nn.functional.softmax` which has (forward + backward):
def forward(self, input_2):
_softmax_default = torch.ops.aten._softmax.default(input_2, None, None); input_2 = None
zeros_like_default = torch.ops.aten.zeros_like.default(_softmax_default, dtype = None, layout = None, device = None, pin_memory = None)
detach_default = torch.ops.aten.detach.default(_softmax_default); _softmax_default = None
_softmax_backward_data_default = torch.ops.aten._softmax_backward_data.default(zeros_like_default, detach_default, None, None); zeros_like_default = detach_default = None
detach_default_1 = torch.ops.aten.detach.default(_softmax_backward_data_default); _softmax_backward_data_default = None
detach_default_2 = torch.ops.aten.detach.default(detach_default_1); detach_default_1 = None
Args:
n (Node): A node from the graph
Returns:
bool: Whether the node is a ReLU-like node
"""
if n.op == 'call_function':
return n.target in [torch.nn.functional.relu]
return n.target in OUTPUT_SAVED_OPS
elif n.op == 'call_module':
return type(n.graph.owning_module.get_submodule(n.target)) in [torch.nn.ReLU]
return type(n.graph.owning_module.get_submodule(n.target)) in OUTPUT_SAVED_MOD
return False
if not is_relu_node(n):
if not is_relu_like_node(n):
return activation_size(n.meta["fwd_tmp"])
return 0

View File

@ -9,7 +9,7 @@ from torch.nn.parameter import Parameter
from torch.utils._pytree import tree_map
from .._compatibility import compatibility
from .constants import ALIAS_ATEN
from .constants import ALIAS_ATEN, OUTPUT_SAVED_MOD, OUTPUT_SAVED_OPS
from .dataflow import GraphInfo, Phase, autograd_graph_analysis, is_phase
from .memory import activation_size, parameter_size
from .opcount import flop_mapping
@ -272,7 +272,8 @@ def _profile_meta(target: Callable, *args, **kwargs) -> Tuple[Tuple[Any, ...], G
tensor = x._tensor.detach()
tensor.uuid = x._tensor.uuid
return tensor
return x
if not isinstance(x, torch.finfo):
return x
graph_info.fwd_out = list(map(extract_tensor, normalize_tuple(out)))
@ -314,21 +315,17 @@ def profile_function(target: 'Target', device: str = 'meta') -> Callable:
# If there is an argument that this `call_function` is inplace, we should
# still run the profiling but discard some results regarding `target`
global do_not_cache
inplace = kwargs.get('inplace', False)
if inplace or target in [torch.nn.functional.relu]:
if target in OUTPUT_SAVED_OPS:
do_not_cache = True
if inplace:
do_not_cache = True
kwargs['inplace'] = False
if device == 'meta':
out, meta = _profile_meta(func, *args, **kwargs)
# currently we set the fwd_mem_tmp of ReLU to zero
if target in [torch.nn.functional.relu]:
meta.fwd_in = []
meta.fwd_tmp = []
meta.bwd_mem_out = 0
meta.fwd_mem_tmp = 0
else:
out, meta = _profile_concrete(func, *args, **kwargs)
if inplace:
kwargs['inplace'] = True
do_not_cache = False
@ -386,20 +383,16 @@ def profile_module(module: torch.nn.Module, device: str = 'meta') -> Callable:
global do_not_cache
inplace = getattr(module, 'inplace', False)
if inplace or type(module) in [torch.nn.ReLU]:
if type(module) in OUTPUT_SAVED_MOD:
do_not_cache = True
if inplace:
do_not_cache = True
module.inplace = False
if device == 'meta':
out, meta = _profile_meta(func, *args, **kwargs)
# currently we set the fwd_tmp of ReLU to []
if type(module) in [torch.nn.ReLU]:
meta.fwd_in = []
meta.fwd_tmp = []
meta.bwd_mem_out = 0
else:
out, meta = _profile_concrete(func, *args, **kwargs)
if inplace:
module.inplace = True
do_not_cache = False

View File

@ -125,5 +125,5 @@ class MetaTensor(torch.Tensor):
device = kwargs['device']
result = super().to(*args, **kwargs)
if device is not None:
result = MetaTensor(deepcopy(result), fake_device=device)
result = MetaTensor(result, fake_device=device)
return result

View File

@ -0,0 +1,50 @@
import torch
import torch.nn as nn
from transformers import GPT2Config, GPT2LMHeadModel
class GPTLMModel(nn.Module):
def __init__(self,
hidden_size=768,
num_layers=12,
num_attention_heads=12,
max_seq_len=1024,
vocab_size=50257,
checkpoint=False):
super().__init__()
self.checkpoint = checkpoint
self.model = GPT2LMHeadModel(
GPT2Config(n_embd=hidden_size,
n_layer=num_layers,
n_head=num_attention_heads,
n_positions=max_seq_len,
n_ctx=max_seq_len,
vocab_size=vocab_size))
if checkpoint:
self.model.gradient_checkpointing_enable()
def forward(self, input_ids, attention_mask):
# Only return lm_logits
return self.model(input_ids=input_ids, attention_mask=attention_mask, use_cache=not self.checkpoint)[0]
class GPTLMLoss(nn.Module):
def __init__(self):
super().__init__()
self.loss_fn = nn.CrossEntropyLoss()
def forward(self, logits, labels):
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
return self.loss_fn(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
def gpt2_medium(checkpoint=False):
return GPTLMModel(hidden_size=1024, num_layers=24, num_attention_heads=16, checkpoint=checkpoint)
def gpt2_xl(checkpoint=False):
return GPTLMModel(hidden_size=1600, num_layers=48, num_attention_heads=32, checkpoint=checkpoint)

View File

@ -0,0 +1,181 @@
from typing import Optional, Tuple, Union
import torch
import torch.fx
import torchvision.models as tm
from colossalai.fx.passes.meta_info_prop import MetaInfoProp
from colossalai.fx.profiler import (calculate_fwd_out, calculate_fwd_tmp, is_compatible_with_meta, parameter_size)
from colossalai.fx.tracer.tracer import ColoTracer
from colossalai.testing.pytest_wrapper import run_on_environment_flag
from gpt_utils import gpt2_medium, gpt2_xl
from torch.fx import symbolic_trace
if is_compatible_with_meta():
from colossalai.fx.profiler import MetaTensor
TM_BATCH_SIZE = 64
GPT_BATCH_SIZE = 8
NUM_STEPS = 5
def extract_forward_mem(gm: torch.fx.GraphModule):
node_size = 0
param_size = 0
for node in gm.graph.nodes:
node_size += calculate_fwd_tmp(node)
node_size += calculate_fwd_out(node)
param_size = parameter_size(gm)
return (node_size + param_size) / 1024**2, param_size / 1024**2
def extract_forward_flops(gm: torch.fx.GraphModule):
fwd_flop = 0
bwd_flop = 0
for node in gm.graph.nodes:
fwd_flop += node.meta.get('fwd_flop', 0)
bwd_flop += node.meta.get('bwd_flop', 0)
return fwd_flop, bwd_flop
def gen_tm_data(batch_size: int, shape: Tuple[int, int, int], device='cuda'):
data = torch.rand(batch_size, *shape, device=device)
label = torch.empty(batch_size, dtype=torch.long, device=device).random_(1000)
return data, label
def gen_gpt_data(batch_size, seq_len, vocab_size, device='cpu'):
input_ids = torch.randint(0, vocab_size, (batch_size, seq_len), device=device)
attention_mask = torch.ones_like(input_ids, device=device)
return input_ids, attention_mask
def run_tm_forward(gm: torch.fx.GraphModule):
torch.cuda.reset_peak_memory_stats()
forward_mem = -torch.cuda.memory_allocated(device="cuda:0") / 1024**2
param_mem = -torch.cuda.memory_allocated(device="cuda:0") / 1024**2
gm.cuda()
param_mem += torch.cuda.memory_allocated(device="cuda:0") / 1024**2
gm.train()
for n in range(NUM_STEPS):
torch.cuda.reset_peak_memory_stats()
data, _ = gen_tm_data(TM_BATCH_SIZE, (3, 224, 224))
# If we need to dive deep into the memory usage by
# inspecting `saved_tensor_hooks`
# =====================================================
# fwd_mem = 0
# cache = set()
# def pack(x):
# if isinstance(x, torch.Tensor):
# nonlocal fwd_mem, cache
# if x.data_ptr() not in cache:
# fwd_mem += activation_size(x)
# cache.add(x.data_ptr())
# return x
# def unpack(x):
# return x
#
# with torch.autograd.graph.saved_tensors_hooks(pack, unpack):
# output = gm(data)
# print(f'Memory estimation by saved_tensor_hooks: {fwd_mem / 1024**2}')
# =====================================================
output = gm(data)
forward_mem += torch.cuda.memory_allocated(device="cuda:0") / 1024**2 / NUM_STEPS
del output
return forward_mem, param_mem
def run_gpt_forward(gm: torch.fx.GraphModule):
torch.cuda.reset_peak_memory_stats()
forward_mem = -torch.cuda.memory_allocated(device="cuda:0") / 1024**2
param_mem = -torch.cuda.memory_allocated(device="cuda:0") / 1024**2
gm.cuda()
param_mem += torch.cuda.memory_allocated(device="cuda:0") / 1024**2
for n in range(NUM_STEPS):
torch.cuda.reset_peak_memory_stats()
data, mask = gen_gpt_data(GPT_BATCH_SIZE, 1024, 50257, device='cuda:0')
# If we need to dive deep into the memory usage by
# inspecting `saved_tensor_hooks`
# =====================================================
# fwd_mem = 0
# cache = set()
# def pack(x):
# if isinstance(x, torch.Tensor):
# nonlocal fwd_mem, cache
# if x.data_ptr() not in cache:
# fwd_mem += activation_size(x)
# cache.add(x.data_ptr())
# return x
# def unpack(x):
# return x
#
# with torch.autograd.graph.saved_tensors_hooks(pack, unpack):
# output = gm(data, mask)
# print(f'Memory estimation by saved_tensor_hooks: {fwd_mem / 1024**2}')
# =====================================================
output = gm(data, mask)
forward_mem += torch.cuda.memory_allocated(device="cuda:0") / 1024**2 / NUM_STEPS
del output
return forward_mem, param_mem
@run_on_environment_flag(name='FX_PROFILER')
def test_meta_info_prop():
for m in [
tm.alexnet, tm.resnet18, tm.resnet34, tm.resnet50, tm.resnet101, tm.resnet152, tm.densenet121,
tm.densenet161, tm.densenet169, tm.densenet201, tm.convnext_tiny, tm.convnext_small, tm.convnext_base,
tm.convnext_large, tm.wide_resnet50_2, tm.wide_resnet101_2, tm.regnet_x_16gf, tm.mnasnet0_5,
tm.efficientnet_b0, tm.shufflenet_v2_x0_5, tm.shufflenet_v2_x1_0, tm.shufflenet_v2_x1_5,
tm.shufflenet_v2_x2_0, tm.mobilenet_v2, tm.mobilenet_v3_small, tm.mobilenet_v3_large, tm.resnext50_32x4d,
tm.resnext101_32x8d, tm.resnext101_64x4d, tm.vit_b_16, tm.vit_b_32, tm.vit_h_14, tm.vit_l_16, tm.vit_l_32,
tm.vgg11, tm.vgg11_bn, tm.vgg13, tm.vgg13_bn, tm.vgg16, tm.vgg16_bn, tm.vgg19, tm.vgg19_bn
]:
model = m().cuda()
model.train()
data = MetaTensor(torch.rand(int(TM_BATCH_SIZE), 3, 224, 224, device='meta'), fake_device='cuda:0')
gm = symbolic_trace(model)
interp = MetaInfoProp(gm)
interp.propagate(data)
gm.cpu()
meta_forward_mem, meta_param_mem = extract_forward_mem(gm)
fwd_flop, bwd_flop = extract_forward_flops(gm)
concrete_forward_mem, concrete_param_mem = run_tm_forward(gm)
print(
f'|{m.__name__}|{meta_forward_mem:.3f} MB|{meta_param_mem:.3f} MB|{concrete_forward_mem:.3f} MB|{concrete_param_mem:.3f} MB|fwd_flop={fwd_flop / 1e9:.3f}GFLOPs|bwd_flop={bwd_flop / 1e9:.3f}GFLOPs|'
)
del model, gm
@run_on_environment_flag(name='FX_PROFILER')
def test_gpt_meta_info_prop():
for m in [gpt2_medium]:
model = m().cuda()
model.train()
data, mask = gen_gpt_data(GPT_BATCH_SIZE, 1024, 50257, device='meta')
graph = ColoTracer().trace(model, meta_args={'input_ids': data, 'attention_mask': mask})
gm = torch.fx.GraphModule(model, graph)
interp = MetaInfoProp(gm)
interp.propagate(MetaTensor(data, fake_device='cuda:0'), MetaTensor(mask, fake_device='cuda:0'))
model.cpu()
fwd_flop, bwd_flop = extract_forward_flops(gm)
concrete_forward_mem, concrete_param_mem = run_gpt_forward(gm)
meta_forward_mem, meta_param_mem = extract_forward_mem(gm)
print(
f'|{m.__name__}|{meta_forward_mem:.3f} MB|{meta_param_mem:.3f} MB|{concrete_forward_mem:.3f} MB|{concrete_param_mem:.3f} MB|fwd_flop={fwd_flop / 1e9:.3f}GFLOPs|bwd_flop={bwd_flop / 1e9:.3f}GFLOPs|'
)
del model, gm
if __name__ == '__main__':
test_meta_info_prop()
test_gpt_meta_info_prop()