diff --git a/tests/test_pipeline/test_schedule/test_zerobubble_pp.py b/tests/test_pipeline/test_schedule/test_zerobubble_pp.py index 3d07bb1dd..6dc855728 100644 --- a/tests/test_pipeline/test_schedule/test_zerobubble_pp.py +++ b/tests/test_pipeline/test_schedule/test_zerobubble_pp.py @@ -558,8 +558,9 @@ def run_fwd_bwd_vschedule_with_optim(test_config): batch_size = test_config["batch_size"] num_layers = 8 assert num_layers % num_model_chunk == 0, f"Model with {num_layers} layer can not dist on {num_model_chunk} chunk" - in_dim = out_dim = 16 - print(f"Before init Model: {torch.cuda.memory_allocated()/1024**3 :.3f} GB on device {stage_manager.get_rank()};") + in_dim = out_dim = 4096 + before_init_memory = torch.cuda.memory_allocated() / 1024**3 + print(f"Before init Model: {before_init_memory :.3f} GB on device {stage_manager.get_rank()};") model = MlpModel(in_dim=in_dim, out_dim=out_dim, num_layers=num_layers).to(rank) data_iter = [torch.rand(batch_size, in_dim, out_dim, requires_grad=True).to(rank)] @@ -595,9 +596,8 @@ def run_fwd_bwd_vschedule_with_optim(test_config): optimizer_base = torch.optim.SGD(model_base.parameters(), lr=1e-5) optimizer_pp = OptimizerWrapper(torch.optim.SGD(local_chunk.parameters(), lr=1e-5)) - print( - f"After init Model & input: {torch.cuda.memory_allocated()/1024**3 :.3f} GB on device {stage_manager.get_rank()};" - ) + after_init_memory = torch.cuda.memory_allocated() / 1024**3 + print(f"After init Model & input: {after_init_memory :.5f} GB on device {stage_manager.get_rank()};") torch.cuda.synchronize() result = scheduler.forward_backward_step( @@ -611,6 +611,19 @@ def run_fwd_bwd_vschedule_with_optim(test_config): optimizer_pp.step() + after_pp_step_memory = torch.cuda.memory_allocated() / 1024**3 + + # assert memory + if rank != 0: + # w.grad hid_dim * hid_dim * 4(fp32) * 2 (2 layer in each stage) / 1024**3 + # output hid_dim * hid_dim * 4(fp32) / 1024**3 + assert (after_pp_step_memory - after_init_memory) == (in_dim * in_dim * 4 * 3 / 1024**3) + else: + # TODO: + # rank0 will also hold output + assert round((after_pp_step_memory - after_init_memory), 5) == round( + (in_dim * in_dim * 4 * 3 / 1024**3 + batch_size * in_dim * in_dim * 4 / 1024**3), 5 + ) ########################## # Fwd bwd for base ########################## @@ -619,7 +632,6 @@ def run_fwd_bwd_vschedule_with_optim(test_config): loss_base = criterion(output_base) loss_base.backward() optimizer_base.step() - print(f"After base fwd & bwd: {torch.cuda.memory_allocated()/1024**3 :.3f} GB;") ########################## # assert loss & output