[fx] patched conv and normalization (#1188)

pull/1191/head
Frank Lee 2022-06-29 18:58:38 +08:00 committed by GitHub
parent 6f0733a1ef
commit 2c8c05675d
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 308 additions and 0 deletions

View File

@ -1,7 +1,88 @@
import math
import torch
from .registry import meta_patched_module
@meta_patched_module.register(torch.nn.Linear)
def torch_nn_linear(self, input):
last_dim = input.shape[-1]
assert last_dim == self.in_features, f'Expected hidden size {self.in_features} but got {last_dim} for the torch.nn.Linear patch'
return torch.empty(input.shape[:-1] + (self.out_features,), device="meta")
@meta_patched_module.register(torch.nn.LayerNorm)
@meta_patched_module.register(torch.nn.GroupNorm)
@meta_patched_module.register(torch.nn.BatchNorm1d)
@meta_patched_module.register(torch.nn.BatchNorm2d)
@meta_patched_module.register(torch.nn.BatchNorm3d)
def torch_nn_normalize(self, input):
# check shape
if isinstance(self, torch.nn.BatchNorm1d):
assert input.dim() in [2, 3]
elif isinstance(self, torch.nn.BatchNorm2d):
assert input.dim() == 4
elif isinstance(self, torch.nn.BatchNorm3d):
assert input.dim() == 5
# normalization maintain the same shape as the input
return input.clone()
@meta_patched_module.register(torch.nn.Embedding)
def torch_nn_embedding(self, input):
result_shape = input.shape[:-1] + (self.embedding_dim,)
return torch.empty(result_shape, device='meta')
@meta_patched_module.register(torch.nn.Conv1d)
def torch_nn_conv1d(self, input):
# the output shape is calculated using the formula stated
# at https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html#torch.nn.Conv1d
l_in = input.shape[-1]
c_out = self.out_channels
l_out = math.floor((l_in + 2 * self.padding[0] - self.dilation[0] *
(self.kernel_size[0] - 1) - 1) / self.stride[0] + 1)
result_shape = input.shape[:-2] + (
c_out,
l_out,
)
return torch.empty(result_shape, device='meta')
@meta_patched_module.register(torch.nn.Conv2d)
def torch_nn_conv2d(self, input):
# the output shape is calculated using the formula stated
# at https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html#torch.nn.Conv2d
h_in, w_in = input.shape[-2:]
c_out = self.out_channels
h_out = math.floor((h_in + 2 * self.padding[0] - self.dilation[0] *
(self.kernel_size[0] - 1) - 1) / self.stride[0] + 1)
w_out = math.floor((w_in + 2 * self.padding[1] - self.dilation[1] *
(self.kernel_size[1] - 1) - 1) / self.stride[1] + 1)
result_shape = input.shape[:-3] + (
c_out,
h_out,
w_out,
)
return torch.empty(result_shape, device='meta')
@meta_patched_module.register(torch.nn.Conv3d)
def torch_nn_conv3d(self, input):
# the output shape is calculated using the formula stated
# at https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html#torch.nn.Conv3d
d_in, h_in, w_in = input.shape[-3:]
c_out = self.out_channels
d_out = math.floor((d_in + 2 * self.padding[0] - self.dilation[0] *
(self.kernel_size[0] - 1) - 1) / self.stride[0] + 1)
h_out = math.floor((h_in + 2 * self.padding[1] - self.dilation[1] *
(self.kernel_size[1] - 1) - 1) / self.stride[1] + 1)
w_out = math.floor((w_in + 2 * self.padding[2] - self.dilation[2] *
(self.kernel_size[2] - 1) - 1) / self.stride[2] + 1)
result_shape = input.shape[:-4] + (
c_out,
d_out,
h_out,
w_out,
)
return torch.empty(result_shape, device='meta')

View File

@ -0,0 +1,227 @@
import torch
from colossalai.fx.tracer.meta_patch import patched_module
def _run(data, module, patch_fn):
try:
output = patch_fn(module, data)
return output
except Exception as e:
return e
def _assert_output_shape(data, module, patch_fn, expect_exception, output_shape):
output = _run(data, module, patch_fn)
if expect_exception:
assert isinstance(output, AssertionError)
else:
assert not isinstance(output, Exception)
assert output.is_meta
assert output.shape == output_shape
def test_linear():
# test linear patch can produce the meta output with correct shape
data = torch.rand(2, 4, device='meta')
module = torch.nn.Linear(4, 2)
_assert_output_shape(data, module, patched_module.torch_nn_linear, False, torch.Size([2, 2]))
# Test if the linear patch can catch exception when dimension does not match
data = torch.rand(2, 2, device='meta')
_assert_output_shape(data, module, patched_module.torch_nn_linear, True, None)
def test_embedding():
data = torch.rand(2, 4, device='meta')
# test layernorm
ln = torch.nn.LayerNorm(4)
_assert_output_shape(data, ln, patched_module.torch_nn_normalize, False, data.shape)
# test group norm
gn = torch.nn.GroupNorm(4, num_channels=2)
_assert_output_shape(data, gn, patched_module.torch_nn_normalize, False, data.shape)
# test batch norm 1d
bn1d = torch.nn.BatchNorm1d(4)
data = torch.rand(2, 4, device='meta')
_assert_output_shape(data=data,
module=bn1d,
patch_fn=patched_module.torch_nn_normalize,
expect_exception=False,
output_shape=data.shape)
data = torch.rand(2, 4, device='meta')
_assert_output_shape(data=data,
module=bn1d,
patch_fn=patched_module.torch_nn_normalize,
expect_exception=False,
output_shape=data.shape)
data = torch.rand(2, 3, 4, device='meta')
_assert_output_shape(data=data,
module=bn1d,
patch_fn=patched_module.torch_nn_normalize,
expect_exception=False,
output_shape=data.shape)
data = torch.rand(1, 2, 3, 4, device='meta')
_assert_output_shape(data=data,
module=bn1d,
patch_fn=patched_module.torch_nn_normalize,
expect_exception=True,
output_shape=None)
# test batch norm 2d
bn2d = torch.nn.BatchNorm2d(4)
data = torch.rand(1, 2, 3, 4, device='meta')
_assert_output_shape(data=data,
module=bn2d,
patch_fn=patched_module.torch_nn_normalize,
expect_exception=False,
output_shape=data.shape)
data = torch.rand(2, 3, 4, device='meta')
_assert_output_shape(data=data,
module=bn2d,
patch_fn=patched_module.torch_nn_normalize,
expect_exception=True,
output_shape=None)
# # test batch size 3d
bn3d = torch.nn.BatchNorm3d(4)
data = torch.rand(1, 1, 2, 3, 4, device='meta')
_assert_output_shape(data=data,
module=bn3d,
patch_fn=patched_module.torch_nn_normalize,
expect_exception=False,
output_shape=data.shape)
data = torch.rand(1, 2, 3, 4, device='meta')
_assert_output_shape(data=data,
module=bn3d,
patch_fn=patched_module.torch_nn_normalize,
expect_exception=True,
output_shape=None)
def test_conv1d():
# test conv 1d
data = torch.rand(2, 3, 4)
conv1d = torch.nn.Conv1d(in_channels=3, out_channels=4, kernel_size=2)
materialized_output = conv1d(data)
meta_data = data.to('meta')
_assert_output_shape(data=meta_data,
module=conv1d,
patch_fn=patched_module.torch_nn_conv1d,
expect_exception=False,
output_shape=materialized_output.shape)
conv1d = torch.nn.Conv1d(in_channels=3, out_channels=4, kernel_size=2, padding=1)
materialized_output = conv1d(data)
meta_data = data.to('meta')
_assert_output_shape(data=meta_data,
module=conv1d,
patch_fn=patched_module.torch_nn_conv1d,
expect_exception=False,
output_shape=materialized_output.shape)
conv1d = torch.nn.Conv1d(in_channels=3,
out_channels=4,
kernel_size=2,
padding=1,
dilation=2,
padding_mode='reflect')
materialized_output = conv1d(data)
meta_data = data.to('meta')
_assert_output_shape(data=meta_data,
module=conv1d,
patch_fn=patched_module.torch_nn_conv1d,
expect_exception=False,
output_shape=materialized_output.shape)
def test_conv2d():
# test conv 1d
data = torch.rand(2, 3, 4, 4)
conv2d = torch.nn.Conv2d(in_channels=3, out_channels=4, kernel_size=2)
materialized_output = conv2d(data)
_assert_output_shape(data=data,
module=conv2d,
patch_fn=patched_module.torch_nn_conv2d,
expect_exception=False,
output_shape=materialized_output.shape)
conv2d = torch.nn.Conv2d(in_channels=3, out_channels=4, kernel_size=2, padding=1)
materialized_output = conv2d(data)
_assert_output_shape(data=data,
module=conv2d,
patch_fn=patched_module.torch_nn_conv2d,
expect_exception=False,
output_shape=materialized_output.shape)
conv2d = torch.nn.Conv2d(in_channels=3, out_channels=4, kernel_size=2, padding=1, dilation=2)
materialized_output = conv2d(data)
_assert_output_shape(data=data,
module=conv2d,
patch_fn=patched_module.torch_nn_conv2d,
expect_exception=False,
output_shape=materialized_output.shape)
conv2d = torch.nn.Conv2d(in_channels=3,
out_channels=4,
kernel_size=2,
padding=1,
dilation=2,
padding_mode='reflect')
materialized_output = conv2d(data)
_assert_output_shape(data=data,
module=conv2d,
patch_fn=patched_module.torch_nn_conv2d,
expect_exception=False,
output_shape=materialized_output.shape)
def test_conv3d():
# test conv 1d
data = torch.rand(2, 3, 4, 4, 4)
conv3d = torch.nn.Conv3d(in_channels=3, out_channels=4, kernel_size=2)
materialized_output = conv3d(data)
_assert_output_shape(data=data,
module=conv3d,
patch_fn=patched_module.torch_nn_conv3d,
expect_exception=False,
output_shape=materialized_output.shape)
conv3d = torch.nn.Conv3d(in_channels=3, out_channels=4, kernel_size=2, padding=1)
materialized_output = conv3d(data)
_assert_output_shape(data=data,
module=conv3d,
patch_fn=patched_module.torch_nn_conv3d,
expect_exception=False,
output_shape=materialized_output.shape)
conv3d = torch.nn.Conv3d(in_channels=3, out_channels=4, kernel_size=2, padding=1, dilation=2)
materialized_output = conv3d(data)
_assert_output_shape(data=data,
module=conv3d,
patch_fn=patched_module.torch_nn_conv3d,
expect_exception=False,
output_shape=materialized_output.shape)
conv3d = torch.nn.Conv3d(in_channels=3,
out_channels=4,
kernel_size=2,
padding=1,
dilation=2,
padding_mode='reflect')
materialized_output = conv3d(data)
_assert_output_shape(data=data,
module=conv3d,
patch_fn=patched_module.torch_nn_conv3d,
expect_exception=False,
output_shape=materialized_output.shape)