[autoparallel] add getattr handler (#1767)

* [autoparallel] add getattr haandler

* polish code

* add extra processes for Parameters

* add unit test for param resharding cost

* add docstring and polish test
pull/1783/head
YuliangLiu0306 2022-11-03 12:31:33 +08:00 committed by GitHub
parent c6a1a62636
commit 2c4c7b3618
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
11 changed files with 306 additions and 37 deletions

View File

@ -2,6 +2,7 @@ from .batch_norm_handler import BatchNormModuleHandler
from .binary_elementwise_handler import BinaryElementwiseHandler
from .bmm_handler import AddBMMFunctionHandler, BMMFunctionHandler
from .conv_handler import ConvFunctionHandler, ConvModuleHandler
from .getatrr_handler import GetattrHandler
from .layer_norm_handler import LayerNormModuleHandler
from .linear_handler import LinearFunctionHandler, LinearModuleHandler
from .matmul_handler import MatMulHandler

View File

@ -0,0 +1,34 @@
from typing import Dict, List
from ..sharding_strategy import OperationData, OperationDataType
from .node_handler import NodeHandler
from .strategy import GetattrGenerator, StrategyGenerator
__all__ = ['GetattrHandler']
class GetattrHandler(NodeHandler):
"""
A GetattrHandler which deals with the sharding strategies for Getattr Node.
"""
def get_strategy_generator(self) -> List[StrategyGenerator]:
op_data_mapping = self.get_operation_data_mapping()
generators = []
generators.append(GetattrGenerator(op_data_mapping, self.device_mesh))
return generators
def get_operation_data_mapping(self) -> Dict[str, OperationData]:
# use transposed shape for strategies
# the strategies will be transformed back to its original shape in self.post_process
# There are only two possible types for get_attr node:
# 1. torch.Tensor(torch.nn.Parameters or torch.nn.Buffers)
# 2. torch.nn.Module
# temporarily, we just support first case in Tracer, so we don't have to worry about
# issue related to the node._meta_data type.
physical_output = OperationData(name=str(self.node), type=OperationDataType.OUTPUT, data=self.node._meta_data)
mapping = {"output": physical_output}
return mapping

View File

@ -6,6 +6,7 @@ from torch.fx.node import Node
from colossalai.auto_parallel.tensor_shard.sharding_strategy import (
OperationData,
OperationDataType,
ShardingStrategy,
StrategiesVector,
TrainCycleItem,
@ -49,6 +50,9 @@ class NodeHandler(ABC):
for node in self.predecessor_node:
node_name = str(node)
# get the current sharding spec generated by this node handler
op_data = strategy.get_op_data_by_name(node_name)
current_sharding_spec = strategy.sharding_specs[op_data]
# get the sharding specs for this node generated
# in its own node handler
@ -59,10 +63,6 @@ class NodeHandler(ABC):
prev_strategy.get_sharding_spec_by_name(node_name) for prev_strategy in prev_strategy_vector
]
# get the current sharding spec generated by this node handler
op_data = strategy.get_op_data_by_name(node_name)
current_sharding_spec = strategy.sharding_specs[op_data]
# create data structrure to store costs
if op_data not in resharding_costs:
resharding_costs[node] = []
@ -71,11 +71,14 @@ class NodeHandler(ABC):
# compute the resharding cost to switch to the sharding spec generated
# by the current node handler
for prev_sharding_spec in prev_sharding_specs:
_, _, resharding_cost = shape_consistency_manager.shape_consistency(prev_sharding_spec,
current_sharding_spec)
resharding_cost = TrainCycleItem(fwd=resharding_cost["forward"],
bwd=resharding_cost["backward"],
total=resharding_cost["total"])
if op_data.type == OperationDataType.PARAM:
resharding_cost = TrainCycleItem(fwd=0, bwd=0, total=0)
else:
_, _, resharding_cost = shape_consistency_manager.shape_consistency(
prev_sharding_spec, current_sharding_spec)
resharding_cost = TrainCycleItem(fwd=resharding_cost["forward"],
bwd=resharding_cost["backward"],
total=resharding_cost["total"])
resharding_costs[node].append(resharding_cost)
strategy.resharding_costs = resharding_costs
return strategy

View File

@ -13,6 +13,7 @@ __all__ = ['ReshapeHandler']
@operator_registry.register(torch.reshape)
@operator_registry.register(torch.flatten)
@operator_registry.register(torch.Tensor.permute)
@operator_registry.register(torch.Tensor.view)
@operator_registry.register(torch.nn.AdaptiveAvgPool2d)
class ReshapeHandler(NodeHandler):
"""

View File

@ -1,6 +1,7 @@
from .batch_norm_generator import BatchNormStrategyGenerator
from .binary_elementwise_generator import BinaryElementwiseStrategyGenerator
from .conv_strategy_generator import ConvStrategyGenerator
from .getattr_generator import GetattrGenerator
from .getitem_generator import GetItemStrategyGenerator, TensorStrategyGenerator, TensorTupleStrategyGenerator
from .layer_norm_generator import LayerNormGenerator
from .matmul_strategy_generator import (
@ -22,5 +23,5 @@ __all__ = [
'BatchedMatMulStrategyGenerator', 'ConvStrategyGenerator', 'UnaryElementwiseGenerator',
'BatchNormStrategyGenerator', 'GetItemStrategyGenerator', 'TensorStrategyGenerator', 'TensorTupleStrategyGenerator',
'LayerNormGenerator', 'ReshapeGenerator', 'PlaceholderGenerator', 'OutputGenerator', 'WhereGenerator',
'ReshapeGenerator', 'NormalPoolStrategyGenerator', 'BinaryElementwiseStrategyGenerator'
'ReshapeGenerator', 'NormalPoolStrategyGenerator', 'BinaryElementwiseStrategyGenerator', 'GetattrGenerator'
]

View File

@ -0,0 +1,53 @@
from typing import List
from colossalai.auto_parallel.tensor_shard.sharding_strategy import MemoryCost, ShardingStrategy, TrainCycleItem
from .strategy_generator import StrategyGenerator
__all__ = ['GetattrGenerator']
class GetattrGenerator(StrategyGenerator):
"""
PlaceholderGenerator is a generic class to generate strategies for placeholder node.
"""
def validate(self) -> bool:
return super().validate()
def update_compute_cost(self, strategy: ShardingStrategy):
compute_cost = TrainCycleItem(fwd=10, bwd=10, total=20)
strategy.compute_cost = compute_cost
def update_memory_cost(self, strategy: ShardingStrategy):
'''
Compute the memory cost per device with this specific strategy.
'''
forward_size_mapping = {'output': self._compute_size_in_bytes(strategy, "output")}
# compute fwd cost incurred
# fwd_cost = output
fwd_activation_cost = sum([v for k, v in forward_size_mapping.items()])
fwd_mem_cost = MemoryCost(activation=fwd_activation_cost, parameter=0)
bwd_mem_cost = MemoryCost(activation=0, parameter=0)
# compute total cost
total_mem_cost = MemoryCost(activation=fwd_activation_cost, parameter=0)
memory_cost = TrainCycleItem(fwd=fwd_mem_cost, bwd=bwd_mem_cost, total=total_mem_cost)
strategy.memory_cost = memory_cost
def collate_strategies(self) -> List[ShardingStrategy]:
dim_partition_dict_mapping = {
"output": {},
}
communication_action_mapping = {}
sharding_spec_mapping = self.to_sharding_spec_mapping(dim_partition_dict_mapping)
name = 'Replica Attribute'
strategy = self.get_sharding_strategy(name=name,
sharding_spec_mapping=sharding_spec_mapping,
communication_action_mapping=communication_action_mapping)
return [strategy]

View File

@ -6,9 +6,10 @@ from typing import Dict, List
import torch
from torch.fx import Graph, Node
from colossalai.auto_parallel.tensor_shard.node_handler import (OuputHandler, PlacehodlerHandler, operator_registry)
from colossalai.auto_parallel.tensor_shard.sharding_strategy import (ShardingStrategy, StrategiesVector)
from colossalai.auto_parallel.tensor_shard.utils import (generate_resharding_costs, generate_sharding_spec)
from colossalai.auto_parallel.tensor_shard.node_handler import OuputHandler, PlacehodlerHandler, operator_registry
from colossalai.auto_parallel.tensor_shard.node_handler.getatrr_handler import GetattrHandler
from colossalai.auto_parallel.tensor_shard.sharding_strategy import ShardingStrategy, StrategiesVector
from colossalai.auto_parallel.tensor_shard.utils import generate_resharding_costs, generate_sharding_spec
from colossalai.device.device_mesh import DeviceMesh
from colossalai.tensor.shape_consistency import ShapeConsistencyManager
from colossalai.tensor.sharding_spec import ShardingSpec
@ -71,25 +72,8 @@ class StrategiesConstructor:
# get_attr node
if node.op == 'get_attr':
# Same as placeholder nodes, if solver_options.fast is True, we just let them in
# fully replicate status, then strategies of following node will be treated equally due
# to replicate status has no resharding cost to other status. At the same time, the searching
# space is smaller than enumerating all the possible sharding spec for the get_attr node.
# Otherwise, all the possible sharding spec for the get_attr node will be enumerated.
if self.solver_options.fast:
# create sharding strategy for get_attr
name = 'Replica Attribute'
dim_partition_dict = {}
output_sharding_spec = generate_sharding_spec(node, self.device_mesh, dim_partition_dict)
# TODO: use meta_info_prop to profile memory cost
memory_cost = 0
sharding_strategy_attribute = ShardingStrategy(name, output_sharding_spec, memory_cost=memory_cost)
strategies_vector.append(sharding_strategy_attribute)
# # get_attr node
# elif node.op == 'get_attr':
# # TODO: implement getattr node handler
# pass
getattr_handler = GetattrHandler(node, self.device_mesh, strategies_vector)
getattr_handler.register_strategy()
# call_module node
elif node.op == 'call_module':

View File

@ -20,6 +20,7 @@ class BiasAdditionConv(BiasAdditionModule):
if hasattr(conv_module, attr_name):
non_bias_kwargs[attr_name] = getattr(conv_module, attr_name)
if conv_module.padding_mode != "zeros":
#TODO: non zeros mode requires some extra processing for input
conv_type = type(conv_module)
if conv_type == "torch.nn.Conv1d":
padding_element = _single(0)

View File

@ -93,17 +93,18 @@ class ColoTracer(Tracer):
origin_arguments = (kind, target, args, kwargs, name, type_expr, proxy_factory_fn)
# dispatch the arguments generator depending on the kind and target in origin arguments.
args_metas, _ = extract_meta(*args, **kwargs)
handle = None
if kind == "call_function":
if bias_addition_function.has(target):
return bias_addition_function.get(target)(self, target, args, kwargs)
handle = bias_addition_function.get(target)(self, target, args, kwargs)
elif bias_addition_function.has(target.__name__):
# use name for some builtin op like @ (matmul)
return bias_addition_function.get(target.__name__)(self, target, args, kwargs)
handle = bias_addition_function.get(target.__name__)(self, target, args, kwargs)
elif kind == "call_method":
method = getattr(args_metas[0].__class__, target)
if bias_addition_function.has(method):
return bias_addition_function.get(method)(self, target, args, kwargs)
handle = bias_addition_function.get(method)(self, target, args, kwargs)
elif kind == "call_module":
if not hasattr(self, "orig_forward"):
@ -115,10 +116,12 @@ class ColoTracer(Tracer):
if bias_addition_module.has(mod_type) and mod.bias is not None:
function_to_substitute = module_to_func_dict[mod_type]
handle = bias_addition_module.get(mod_type)(self, target, args, kwargs, function_to_substitute)
return handle.generate()
finally:
self._disable_module_getattr = False
if handle is not None:
return handle.generate()
# create nodes using patched arguments
proxy = super().create_proxy(*origin_arguments)
proxy: ColoProxy
@ -254,7 +257,9 @@ class ColoTracer(Tracer):
atoms = target.split(".")
for atom in atoms:
attr_itr = getattr(attr_itr, atom)
if isinstance(attr_itr, torch.Tensor):
if isinstance(attr_itr, torch.nn.parameter.Parameter):
meta_out = torch.nn.Parameter(attr_itr.to(device="meta"))
elif isinstance(attr_itr, torch.Tensor):
meta_out = attr_itr.to(device="meta")
else:
meta_out = attr_itr

View File

@ -0,0 +1,58 @@
import torch
import torch.nn as nn
from colossalai.auto_parallel.tensor_shard.node_handler.getatrr_handler import GetattrHandler
from colossalai.auto_parallel.tensor_shard.sharding_strategy import OperationData, OperationDataType, StrategiesVector
from colossalai.device.device_mesh import DeviceMesh
from colossalai.fx import ColoGraphModule, ColoTracer
class GetattrModel(nn.Module):
def __init__(self):
super().__init__()
self.conv = nn.Conv2d(4, 16, 3, padding=1, bias=False)
def forward(self, input):
weight = self.conv.weight
return weight
def test_getattr_handler():
model = GetattrModel()
tracer = ColoTracer()
# graph():
# %input_1 : torch.Tensor [#users=0] = placeholder[target=input]
# %conv_weight : [#users=1] = get_attr[target=conv.weight]
# return conv_weight
graph = tracer.trace(model, meta_args={'input': torch.rand(4, 4, 64, 64).to('meta')})
gm = ColoGraphModule(model, graph)
physical_mesh_id = torch.arange(0, 4)
mesh_shape = (2, 2)
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape)
getattr_node = list(graph.nodes)[1]
getattr_strategies_vector = StrategiesVector(getattr_node)
# build handler
getattr_handler = GetattrHandler(node=getattr_node,
device_mesh=device_mesh,
strategies_vector=getattr_strategies_vector)
getattr_handler.register_strategy(compute_resharding_cost=False)
# check operation data mapping
mapping = getattr_handler.get_operation_data_mapping()
for name, op_data in mapping.items():
op_data: OperationData
# make sure they have valid values
assert op_data.data is not None
assert mapping['output'].name == "conv_weight"
assert mapping['output'].data.shape == torch.Size((16, 4, 3, 3))
assert mapping['output'].type == OperationDataType.OUTPUT
strategy_name_list = [val.name for val in getattr_handler.strategies_vector]
assert "Replica Attribute" in strategy_name_list
if __name__ == '__main__':
test_getattr_handler()

View File

@ -0,0 +1,128 @@
import torch
from colossalai.auto_parallel.tensor_shard.sharding_strategy import OperationDataType
from colossalai.auto_parallel.tensor_shard.solver import (
CostGraph,
GraphAnalyser,
Solver,
SolverOptions,
StrategiesConstructor,
)
from colossalai.device.device_mesh import DeviceMesh
from colossalai.fx import ColoGraphModule, ColoTracer
def _param_resharding_cost_assertion(node):
for strategy in node.strategies_vector:
for prev_node, resharding_cost in strategy.resharding_costs.items():
if strategy.get_op_data_by_name(str(prev_node)).type == OperationDataType.PARAM:
for cost in resharding_cost:
assert cost.fwd == 0
assert cost.bwd == 0
assert cost.total == 0
class LinearModel(torch.nn.Module):
def __init__(self, in_features, out_features):
super().__init__()
self.linear = torch.nn.Linear(in_features, out_features)
def forward(self, x):
x = self.linear(x)
x = x * 2
return x
class ConvModel(torch.nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, bias=True):
super().__init__()
self.conv = torch.nn.Conv2d(in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
bias=bias)
def forward(self, x):
x = self.conv(x)
x = x * 2
return x
def test_linear_module():
model = LinearModel(4, 8)
physical_mesh_id = torch.arange(0, 4)
mesh_shape = (2, 2)
# [[0, 1]
# [2, 3]]
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape)
tracer = ColoTracer()
# graph():
# %x : torch.Tensor [#users=1] = placeholder[target=x]
# %linear_weight : [#users=1] = get_attr[target=linear.weight]
# %linear_bias : [#users=1] = get_attr[target=linear.bias]
# %linear : [#users=1] = call_function[target=torch._C._nn.linear](args = (%x, %linear_weight), kwargs = {})
# %add : [#users=1] = call_function[target=operator.add](args = (%linear, %linear_bias), kwargs = {})
# %mul : [#users=1] = call_function[target=operator.mul](args = (%add, 2), kwargs = {})
# return mul
graph = tracer.trace(root=model, meta_args={'x': torch.rand(4, 4).to('meta')})
# def forward(self, x : torch.Tensor):
# linear_weight = self.linear.weight
# linear_bias = self.linear.bias
# linear = torch._C._nn.linear(x, linear_weight); x = linear_weight = None
# add = linear + linear_bias; linear = linear_bias = None
# mul = add * 2; add = None
# return mul
gm = ColoGraphModule(model, graph)
gm.recompile()
node_list = list(graph.nodes)
solver_options = SolverOptions(fast=True)
strategies_constructor = StrategiesConstructor(graph, device_mesh, solver_options)
strategies_constructor.build_strategies_and_cost()
linear_node = node_list[3]
_param_resharding_cost_assertion(linear_node)
def test_conv_module():
model = ConvModel(3, 6, 2)
physical_mesh_id = torch.arange(0, 4)
mesh_shape = (2, 2)
# [[0, 1]
# [2, 3]]
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape)
tracer = ColoTracer()
# graph():
# %x : torch.Tensor [#users=1] = placeholder[target=x]
# %conv_weight : [#users=1] = get_attr[target=conv.weight]
# %conv_bias : [#users=1] = get_attr[target=conv.bias]
# %conv2d : [#users=1] = call_function[target=torch.conv2d](args = (%x, %conv_weight), kwargs = {})
# %view : [#users=1] = call_method[target=view](args = (%conv_bias, [1, -1, 1, 1]), kwargs = {})
# %add : [#users=1] = call_function[target=operator.add](args = (%conv2d, %view), kwargs = {})
# %mul : [#users=1] = call_function[target=operator.mul](args = (%add, 2), kwargs = {})
# return mul
graph = tracer.trace(root=model, meta_args={'x': torch.rand(4, 3, 64, 64).to('meta')})
# def forward(self, x : torch.Tensor):
# conv_weight = self.conv.weight
# conv_bias = self.conv.bias
# conv2d = torch.conv2d(x, conv_weight); x = conv_weight = None
# view = conv_bias.view([1, -1, 1, 1]); conv_bias = None
# add = conv2d + view; conv2d = view = None
# mul = add * 2; add = None
# return mul
gm = ColoGraphModule(model, graph)
gm.recompile()
node_list = list(graph.nodes)
conv_node = node_list[3]
solver_options = SolverOptions(fast=True)
strategies_constructor = StrategiesConstructor(graph, device_mesh, solver_options)
strategies_constructor.build_strategies_and_cost()
_param_resharding_cost_assertion(conv_node)
if __name__ == '__main__':
test_linear_module()
test_conv_module()