mirror of https://github.com/hpcaitech/ColossalAI
[autoparallel] add getattr handler (#1767)
* [autoparallel] add getattr haandler * polish code * add extra processes for Parameters * add unit test for param resharding cost * add docstring and polish testpull/1783/head
parent
c6a1a62636
commit
2c4c7b3618
|
@ -2,6 +2,7 @@ from .batch_norm_handler import BatchNormModuleHandler
|
|||
from .binary_elementwise_handler import BinaryElementwiseHandler
|
||||
from .bmm_handler import AddBMMFunctionHandler, BMMFunctionHandler
|
||||
from .conv_handler import ConvFunctionHandler, ConvModuleHandler
|
||||
from .getatrr_handler import GetattrHandler
|
||||
from .layer_norm_handler import LayerNormModuleHandler
|
||||
from .linear_handler import LinearFunctionHandler, LinearModuleHandler
|
||||
from .matmul_handler import MatMulHandler
|
||||
|
|
|
@ -0,0 +1,34 @@
|
|||
from typing import Dict, List
|
||||
|
||||
from ..sharding_strategy import OperationData, OperationDataType
|
||||
from .node_handler import NodeHandler
|
||||
from .strategy import GetattrGenerator, StrategyGenerator
|
||||
|
||||
__all__ = ['GetattrHandler']
|
||||
|
||||
|
||||
class GetattrHandler(NodeHandler):
|
||||
"""
|
||||
A GetattrHandler which deals with the sharding strategies for Getattr Node.
|
||||
"""
|
||||
|
||||
def get_strategy_generator(self) -> List[StrategyGenerator]:
|
||||
op_data_mapping = self.get_operation_data_mapping()
|
||||
generators = []
|
||||
generators.append(GetattrGenerator(op_data_mapping, self.device_mesh))
|
||||
return generators
|
||||
|
||||
def get_operation_data_mapping(self) -> Dict[str, OperationData]:
|
||||
# use transposed shape for strategies
|
||||
# the strategies will be transformed back to its original shape in self.post_process
|
||||
|
||||
# There are only two possible types for get_attr node:
|
||||
# 1. torch.Tensor(torch.nn.Parameters or torch.nn.Buffers)
|
||||
# 2. torch.nn.Module
|
||||
# temporarily, we just support first case in Tracer, so we don't have to worry about
|
||||
# issue related to the node._meta_data type.
|
||||
physical_output = OperationData(name=str(self.node), type=OperationDataType.OUTPUT, data=self.node._meta_data)
|
||||
|
||||
mapping = {"output": physical_output}
|
||||
|
||||
return mapping
|
|
@ -6,6 +6,7 @@ from torch.fx.node import Node
|
|||
|
||||
from colossalai.auto_parallel.tensor_shard.sharding_strategy import (
|
||||
OperationData,
|
||||
OperationDataType,
|
||||
ShardingStrategy,
|
||||
StrategiesVector,
|
||||
TrainCycleItem,
|
||||
|
@ -49,6 +50,9 @@ class NodeHandler(ABC):
|
|||
|
||||
for node in self.predecessor_node:
|
||||
node_name = str(node)
|
||||
# get the current sharding spec generated by this node handler
|
||||
op_data = strategy.get_op_data_by_name(node_name)
|
||||
current_sharding_spec = strategy.sharding_specs[op_data]
|
||||
|
||||
# get the sharding specs for this node generated
|
||||
# in its own node handler
|
||||
|
@ -59,10 +63,6 @@ class NodeHandler(ABC):
|
|||
prev_strategy.get_sharding_spec_by_name(node_name) for prev_strategy in prev_strategy_vector
|
||||
]
|
||||
|
||||
# get the current sharding spec generated by this node handler
|
||||
op_data = strategy.get_op_data_by_name(node_name)
|
||||
current_sharding_spec = strategy.sharding_specs[op_data]
|
||||
|
||||
# create data structrure to store costs
|
||||
if op_data not in resharding_costs:
|
||||
resharding_costs[node] = []
|
||||
|
@ -71,11 +71,14 @@ class NodeHandler(ABC):
|
|||
# compute the resharding cost to switch to the sharding spec generated
|
||||
# by the current node handler
|
||||
for prev_sharding_spec in prev_sharding_specs:
|
||||
_, _, resharding_cost = shape_consistency_manager.shape_consistency(prev_sharding_spec,
|
||||
current_sharding_spec)
|
||||
resharding_cost = TrainCycleItem(fwd=resharding_cost["forward"],
|
||||
bwd=resharding_cost["backward"],
|
||||
total=resharding_cost["total"])
|
||||
if op_data.type == OperationDataType.PARAM:
|
||||
resharding_cost = TrainCycleItem(fwd=0, bwd=0, total=0)
|
||||
else:
|
||||
_, _, resharding_cost = shape_consistency_manager.shape_consistency(
|
||||
prev_sharding_spec, current_sharding_spec)
|
||||
resharding_cost = TrainCycleItem(fwd=resharding_cost["forward"],
|
||||
bwd=resharding_cost["backward"],
|
||||
total=resharding_cost["total"])
|
||||
resharding_costs[node].append(resharding_cost)
|
||||
strategy.resharding_costs = resharding_costs
|
||||
return strategy
|
||||
|
|
|
@ -13,6 +13,7 @@ __all__ = ['ReshapeHandler']
|
|||
@operator_registry.register(torch.reshape)
|
||||
@operator_registry.register(torch.flatten)
|
||||
@operator_registry.register(torch.Tensor.permute)
|
||||
@operator_registry.register(torch.Tensor.view)
|
||||
@operator_registry.register(torch.nn.AdaptiveAvgPool2d)
|
||||
class ReshapeHandler(NodeHandler):
|
||||
"""
|
||||
|
|
|
@ -1,6 +1,7 @@
|
|||
from .batch_norm_generator import BatchNormStrategyGenerator
|
||||
from .binary_elementwise_generator import BinaryElementwiseStrategyGenerator
|
||||
from .conv_strategy_generator import ConvStrategyGenerator
|
||||
from .getattr_generator import GetattrGenerator
|
||||
from .getitem_generator import GetItemStrategyGenerator, TensorStrategyGenerator, TensorTupleStrategyGenerator
|
||||
from .layer_norm_generator import LayerNormGenerator
|
||||
from .matmul_strategy_generator import (
|
||||
|
@ -22,5 +23,5 @@ __all__ = [
|
|||
'BatchedMatMulStrategyGenerator', 'ConvStrategyGenerator', 'UnaryElementwiseGenerator',
|
||||
'BatchNormStrategyGenerator', 'GetItemStrategyGenerator', 'TensorStrategyGenerator', 'TensorTupleStrategyGenerator',
|
||||
'LayerNormGenerator', 'ReshapeGenerator', 'PlaceholderGenerator', 'OutputGenerator', 'WhereGenerator',
|
||||
'ReshapeGenerator', 'NormalPoolStrategyGenerator', 'BinaryElementwiseStrategyGenerator'
|
||||
'ReshapeGenerator', 'NormalPoolStrategyGenerator', 'BinaryElementwiseStrategyGenerator', 'GetattrGenerator'
|
||||
]
|
||||
|
|
|
@ -0,0 +1,53 @@
|
|||
from typing import List
|
||||
|
||||
from colossalai.auto_parallel.tensor_shard.sharding_strategy import MemoryCost, ShardingStrategy, TrainCycleItem
|
||||
|
||||
from .strategy_generator import StrategyGenerator
|
||||
|
||||
__all__ = ['GetattrGenerator']
|
||||
|
||||
|
||||
class GetattrGenerator(StrategyGenerator):
|
||||
"""
|
||||
PlaceholderGenerator is a generic class to generate strategies for placeholder node.
|
||||
"""
|
||||
|
||||
def validate(self) -> bool:
|
||||
return super().validate()
|
||||
|
||||
def update_compute_cost(self, strategy: ShardingStrategy):
|
||||
compute_cost = TrainCycleItem(fwd=10, bwd=10, total=20)
|
||||
strategy.compute_cost = compute_cost
|
||||
|
||||
def update_memory_cost(self, strategy: ShardingStrategy):
|
||||
'''
|
||||
Compute the memory cost per device with this specific strategy.
|
||||
'''
|
||||
forward_size_mapping = {'output': self._compute_size_in_bytes(strategy, "output")}
|
||||
|
||||
# compute fwd cost incurred
|
||||
# fwd_cost = output
|
||||
fwd_activation_cost = sum([v for k, v in forward_size_mapping.items()])
|
||||
fwd_mem_cost = MemoryCost(activation=fwd_activation_cost, parameter=0)
|
||||
|
||||
bwd_mem_cost = MemoryCost(activation=0, parameter=0)
|
||||
|
||||
# compute total cost
|
||||
total_mem_cost = MemoryCost(activation=fwd_activation_cost, parameter=0)
|
||||
memory_cost = TrainCycleItem(fwd=fwd_mem_cost, bwd=bwd_mem_cost, total=total_mem_cost)
|
||||
strategy.memory_cost = memory_cost
|
||||
|
||||
def collate_strategies(self) -> List[ShardingStrategy]:
|
||||
dim_partition_dict_mapping = {
|
||||
"output": {},
|
||||
}
|
||||
communication_action_mapping = {}
|
||||
sharding_spec_mapping = self.to_sharding_spec_mapping(dim_partition_dict_mapping)
|
||||
|
||||
name = 'Replica Attribute'
|
||||
|
||||
strategy = self.get_sharding_strategy(name=name,
|
||||
sharding_spec_mapping=sharding_spec_mapping,
|
||||
communication_action_mapping=communication_action_mapping)
|
||||
|
||||
return [strategy]
|
|
@ -6,9 +6,10 @@ from typing import Dict, List
|
|||
import torch
|
||||
from torch.fx import Graph, Node
|
||||
|
||||
from colossalai.auto_parallel.tensor_shard.node_handler import (OuputHandler, PlacehodlerHandler, operator_registry)
|
||||
from colossalai.auto_parallel.tensor_shard.sharding_strategy import (ShardingStrategy, StrategiesVector)
|
||||
from colossalai.auto_parallel.tensor_shard.utils import (generate_resharding_costs, generate_sharding_spec)
|
||||
from colossalai.auto_parallel.tensor_shard.node_handler import OuputHandler, PlacehodlerHandler, operator_registry
|
||||
from colossalai.auto_parallel.tensor_shard.node_handler.getatrr_handler import GetattrHandler
|
||||
from colossalai.auto_parallel.tensor_shard.sharding_strategy import ShardingStrategy, StrategiesVector
|
||||
from colossalai.auto_parallel.tensor_shard.utils import generate_resharding_costs, generate_sharding_spec
|
||||
from colossalai.device.device_mesh import DeviceMesh
|
||||
from colossalai.tensor.shape_consistency import ShapeConsistencyManager
|
||||
from colossalai.tensor.sharding_spec import ShardingSpec
|
||||
|
@ -71,25 +72,8 @@ class StrategiesConstructor:
|
|||
|
||||
# get_attr node
|
||||
if node.op == 'get_attr':
|
||||
# Same as placeholder nodes, if solver_options.fast is True, we just let them in
|
||||
# fully replicate status, then strategies of following node will be treated equally due
|
||||
# to replicate status has no resharding cost to other status. At the same time, the searching
|
||||
# space is smaller than enumerating all the possible sharding spec for the get_attr node.
|
||||
# Otherwise, all the possible sharding spec for the get_attr node will be enumerated.
|
||||
if self.solver_options.fast:
|
||||
# create sharding strategy for get_attr
|
||||
name = 'Replica Attribute'
|
||||
dim_partition_dict = {}
|
||||
output_sharding_spec = generate_sharding_spec(node, self.device_mesh, dim_partition_dict)
|
||||
# TODO: use meta_info_prop to profile memory cost
|
||||
memory_cost = 0
|
||||
sharding_strategy_attribute = ShardingStrategy(name, output_sharding_spec, memory_cost=memory_cost)
|
||||
strategies_vector.append(sharding_strategy_attribute)
|
||||
|
||||
# # get_attr node
|
||||
# elif node.op == 'get_attr':
|
||||
# # TODO: implement getattr node handler
|
||||
# pass
|
||||
getattr_handler = GetattrHandler(node, self.device_mesh, strategies_vector)
|
||||
getattr_handler.register_strategy()
|
||||
|
||||
# call_module node
|
||||
elif node.op == 'call_module':
|
||||
|
|
|
@ -20,6 +20,7 @@ class BiasAdditionConv(BiasAdditionModule):
|
|||
if hasattr(conv_module, attr_name):
|
||||
non_bias_kwargs[attr_name] = getattr(conv_module, attr_name)
|
||||
if conv_module.padding_mode != "zeros":
|
||||
#TODO: non zeros mode requires some extra processing for input
|
||||
conv_type = type(conv_module)
|
||||
if conv_type == "torch.nn.Conv1d":
|
||||
padding_element = _single(0)
|
||||
|
|
|
@ -93,17 +93,18 @@ class ColoTracer(Tracer):
|
|||
origin_arguments = (kind, target, args, kwargs, name, type_expr, proxy_factory_fn)
|
||||
# dispatch the arguments generator depending on the kind and target in origin arguments.
|
||||
args_metas, _ = extract_meta(*args, **kwargs)
|
||||
handle = None
|
||||
if kind == "call_function":
|
||||
if bias_addition_function.has(target):
|
||||
return bias_addition_function.get(target)(self, target, args, kwargs)
|
||||
handle = bias_addition_function.get(target)(self, target, args, kwargs)
|
||||
elif bias_addition_function.has(target.__name__):
|
||||
# use name for some builtin op like @ (matmul)
|
||||
return bias_addition_function.get(target.__name__)(self, target, args, kwargs)
|
||||
handle = bias_addition_function.get(target.__name__)(self, target, args, kwargs)
|
||||
|
||||
elif kind == "call_method":
|
||||
method = getattr(args_metas[0].__class__, target)
|
||||
if bias_addition_function.has(method):
|
||||
return bias_addition_function.get(method)(self, target, args, kwargs)
|
||||
handle = bias_addition_function.get(method)(self, target, args, kwargs)
|
||||
|
||||
elif kind == "call_module":
|
||||
if not hasattr(self, "orig_forward"):
|
||||
|
@ -115,10 +116,12 @@ class ColoTracer(Tracer):
|
|||
if bias_addition_module.has(mod_type) and mod.bias is not None:
|
||||
function_to_substitute = module_to_func_dict[mod_type]
|
||||
handle = bias_addition_module.get(mod_type)(self, target, args, kwargs, function_to_substitute)
|
||||
return handle.generate()
|
||||
finally:
|
||||
self._disable_module_getattr = False
|
||||
|
||||
if handle is not None:
|
||||
return handle.generate()
|
||||
|
||||
# create nodes using patched arguments
|
||||
proxy = super().create_proxy(*origin_arguments)
|
||||
proxy: ColoProxy
|
||||
|
@ -254,7 +257,9 @@ class ColoTracer(Tracer):
|
|||
atoms = target.split(".")
|
||||
for atom in atoms:
|
||||
attr_itr = getattr(attr_itr, atom)
|
||||
if isinstance(attr_itr, torch.Tensor):
|
||||
if isinstance(attr_itr, torch.nn.parameter.Parameter):
|
||||
meta_out = torch.nn.Parameter(attr_itr.to(device="meta"))
|
||||
elif isinstance(attr_itr, torch.Tensor):
|
||||
meta_out = attr_itr.to(device="meta")
|
||||
else:
|
||||
meta_out = attr_itr
|
||||
|
|
|
@ -0,0 +1,58 @@
|
|||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from colossalai.auto_parallel.tensor_shard.node_handler.getatrr_handler import GetattrHandler
|
||||
from colossalai.auto_parallel.tensor_shard.sharding_strategy import OperationData, OperationDataType, StrategiesVector
|
||||
from colossalai.device.device_mesh import DeviceMesh
|
||||
from colossalai.fx import ColoGraphModule, ColoTracer
|
||||
|
||||
|
||||
class GetattrModel(nn.Module):
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.conv = nn.Conv2d(4, 16, 3, padding=1, bias=False)
|
||||
|
||||
def forward(self, input):
|
||||
weight = self.conv.weight
|
||||
return weight
|
||||
|
||||
|
||||
def test_getattr_handler():
|
||||
model = GetattrModel()
|
||||
tracer = ColoTracer()
|
||||
# graph():
|
||||
# %input_1 : torch.Tensor [#users=0] = placeholder[target=input]
|
||||
# %conv_weight : [#users=1] = get_attr[target=conv.weight]
|
||||
# return conv_weight
|
||||
graph = tracer.trace(model, meta_args={'input': torch.rand(4, 4, 64, 64).to('meta')})
|
||||
gm = ColoGraphModule(model, graph)
|
||||
physical_mesh_id = torch.arange(0, 4)
|
||||
mesh_shape = (2, 2)
|
||||
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape)
|
||||
getattr_node = list(graph.nodes)[1]
|
||||
getattr_strategies_vector = StrategiesVector(getattr_node)
|
||||
|
||||
# build handler
|
||||
getattr_handler = GetattrHandler(node=getattr_node,
|
||||
device_mesh=device_mesh,
|
||||
strategies_vector=getattr_strategies_vector)
|
||||
|
||||
getattr_handler.register_strategy(compute_resharding_cost=False)
|
||||
# check operation data mapping
|
||||
mapping = getattr_handler.get_operation_data_mapping()
|
||||
|
||||
for name, op_data in mapping.items():
|
||||
op_data: OperationData
|
||||
# make sure they have valid values
|
||||
assert op_data.data is not None
|
||||
|
||||
assert mapping['output'].name == "conv_weight"
|
||||
assert mapping['output'].data.shape == torch.Size((16, 4, 3, 3))
|
||||
assert mapping['output'].type == OperationDataType.OUTPUT
|
||||
strategy_name_list = [val.name for val in getattr_handler.strategies_vector]
|
||||
assert "Replica Attribute" in strategy_name_list
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_getattr_handler()
|
|
@ -0,0 +1,128 @@
|
|||
import torch
|
||||
|
||||
from colossalai.auto_parallel.tensor_shard.sharding_strategy import OperationDataType
|
||||
from colossalai.auto_parallel.tensor_shard.solver import (
|
||||
CostGraph,
|
||||
GraphAnalyser,
|
||||
Solver,
|
||||
SolverOptions,
|
||||
StrategiesConstructor,
|
||||
)
|
||||
from colossalai.device.device_mesh import DeviceMesh
|
||||
from colossalai.fx import ColoGraphModule, ColoTracer
|
||||
|
||||
|
||||
def _param_resharding_cost_assertion(node):
|
||||
for strategy in node.strategies_vector:
|
||||
for prev_node, resharding_cost in strategy.resharding_costs.items():
|
||||
if strategy.get_op_data_by_name(str(prev_node)).type == OperationDataType.PARAM:
|
||||
for cost in resharding_cost:
|
||||
assert cost.fwd == 0
|
||||
assert cost.bwd == 0
|
||||
assert cost.total == 0
|
||||
|
||||
|
||||
class LinearModel(torch.nn.Module):
|
||||
|
||||
def __init__(self, in_features, out_features):
|
||||
super().__init__()
|
||||
self.linear = torch.nn.Linear(in_features, out_features)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.linear(x)
|
||||
x = x * 2
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class ConvModel(torch.nn.Module):
|
||||
|
||||
def __init__(self, in_channels, out_channels, kernel_size, bias=True):
|
||||
super().__init__()
|
||||
self.conv = torch.nn.Conv2d(in_channels=in_channels,
|
||||
out_channels=out_channels,
|
||||
kernel_size=kernel_size,
|
||||
bias=bias)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.conv(x)
|
||||
x = x * 2
|
||||
|
||||
return x
|
||||
|
||||
|
||||
def test_linear_module():
|
||||
model = LinearModel(4, 8)
|
||||
physical_mesh_id = torch.arange(0, 4)
|
||||
mesh_shape = (2, 2)
|
||||
# [[0, 1]
|
||||
# [2, 3]]
|
||||
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape)
|
||||
tracer = ColoTracer()
|
||||
# graph():
|
||||
# %x : torch.Tensor [#users=1] = placeholder[target=x]
|
||||
# %linear_weight : [#users=1] = get_attr[target=linear.weight]
|
||||
# %linear_bias : [#users=1] = get_attr[target=linear.bias]
|
||||
# %linear : [#users=1] = call_function[target=torch._C._nn.linear](args = (%x, %linear_weight), kwargs = {})
|
||||
# %add : [#users=1] = call_function[target=operator.add](args = (%linear, %linear_bias), kwargs = {})
|
||||
# %mul : [#users=1] = call_function[target=operator.mul](args = (%add, 2), kwargs = {})
|
||||
# return mul
|
||||
graph = tracer.trace(root=model, meta_args={'x': torch.rand(4, 4).to('meta')})
|
||||
# def forward(self, x : torch.Tensor):
|
||||
# linear_weight = self.linear.weight
|
||||
# linear_bias = self.linear.bias
|
||||
# linear = torch._C._nn.linear(x, linear_weight); x = linear_weight = None
|
||||
# add = linear + linear_bias; linear = linear_bias = None
|
||||
# mul = add * 2; add = None
|
||||
# return mul
|
||||
gm = ColoGraphModule(model, graph)
|
||||
gm.recompile()
|
||||
node_list = list(graph.nodes)
|
||||
|
||||
solver_options = SolverOptions(fast=True)
|
||||
strategies_constructor = StrategiesConstructor(graph, device_mesh, solver_options)
|
||||
strategies_constructor.build_strategies_and_cost()
|
||||
linear_node = node_list[3]
|
||||
_param_resharding_cost_assertion(linear_node)
|
||||
|
||||
|
||||
def test_conv_module():
|
||||
model = ConvModel(3, 6, 2)
|
||||
physical_mesh_id = torch.arange(0, 4)
|
||||
mesh_shape = (2, 2)
|
||||
# [[0, 1]
|
||||
# [2, 3]]
|
||||
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape)
|
||||
tracer = ColoTracer()
|
||||
# graph():
|
||||
# %x : torch.Tensor [#users=1] = placeholder[target=x]
|
||||
# %conv_weight : [#users=1] = get_attr[target=conv.weight]
|
||||
# %conv_bias : [#users=1] = get_attr[target=conv.bias]
|
||||
# %conv2d : [#users=1] = call_function[target=torch.conv2d](args = (%x, %conv_weight), kwargs = {})
|
||||
# %view : [#users=1] = call_method[target=view](args = (%conv_bias, [1, -1, 1, 1]), kwargs = {})
|
||||
# %add : [#users=1] = call_function[target=operator.add](args = (%conv2d, %view), kwargs = {})
|
||||
# %mul : [#users=1] = call_function[target=operator.mul](args = (%add, 2), kwargs = {})
|
||||
# return mul
|
||||
graph = tracer.trace(root=model, meta_args={'x': torch.rand(4, 3, 64, 64).to('meta')})
|
||||
# def forward(self, x : torch.Tensor):
|
||||
# conv_weight = self.conv.weight
|
||||
# conv_bias = self.conv.bias
|
||||
# conv2d = torch.conv2d(x, conv_weight); x = conv_weight = None
|
||||
# view = conv_bias.view([1, -1, 1, 1]); conv_bias = None
|
||||
# add = conv2d + view; conv2d = view = None
|
||||
# mul = add * 2; add = None
|
||||
# return mul
|
||||
gm = ColoGraphModule(model, graph)
|
||||
|
||||
gm.recompile()
|
||||
node_list = list(graph.nodes)
|
||||
conv_node = node_list[3]
|
||||
solver_options = SolverOptions(fast=True)
|
||||
strategies_constructor = StrategiesConstructor(graph, device_mesh, solver_options)
|
||||
strategies_constructor.build_strategies_and_cost()
|
||||
_param_resharding_cost_assertion(conv_node)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_linear_module()
|
||||
test_conv_module()
|
Loading…
Reference in New Issue