[DTensor] refactor CommSpec (#3034)

pull/3056/head
YuliangLiu0306 2023-03-08 10:45:31 +08:00 committed by GitHub
parent ea0b52c12e
commit 29386a54e6
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 501 additions and 1 deletions

View File

@ -0,0 +1,310 @@
from enum import Enum
from typing import Dict
import torch
import torch.distributed as dist
from torch.distributed import ReduceOp
__all__ = [
'CollectiveCommPattern',
'CommSpec',
]
class CollectiveCommPattern(Enum):
GATHER_FWD_SPLIT_BWD = 'gather_fwd_split_bwd'
ALL2ALL_FWD_ALL2ALL_BWD = 'all2all_fwd_all2all_bwd'
SPLIT_FWD_GATHER_BWD = 'split_fwd_gather_bwd'
ALLREDUCE_FWD_IDENTITY_BWD = 'all_reduce_fwd_identity_bwd'
IDENTITY_FWD_ALLREDUCE_BWD = 'identity_fwd_all_reduce_bwd'
MIXGATHER_FWD_SPLIT_BWD = "mixgather_fwd_split_bwd"
class CommSpec:
'''
Communication spec is used to record the communication action. It converts the communication spec
to real action which will be used in runtime. It contains comm_pattern to determine the
communication method, process_groups_dict to determine the process groups, gather_dim and shard_dim
to determine the buffer shape, and logical_process_axis
Argument:
comm_pattern(CollectiveCommPattern): decribe the communication method used in this spec.
process_groups_dict(Dict): A dict which contains the process groups used to apply this CommSpec.
gather_dim(int, Optional): The gather_dim of the tensor will be gathered.
shard_dim(int, Optional): The shard_dim of the tensor will be sharded.
logical_process_axis(Union(int, List[int]), Optional): The mesh_dim to implement the communication action.
'''
def __init__(self,
comm_pattern: CollectiveCommPattern,
process_groups_dict: Dict,
gather_dim: int = None,
shard_dim: int = None,
logical_process_axis: int = None):
self.comm_pattern = comm_pattern
self.gather_dim = gather_dim
self.shard_dim = shard_dim
self.logical_process_axis = logical_process_axis
self.process_groups_dict = process_groups_dict
def __repr__(self):
res_list = ["CommSpec:("]
if self.comm_pattern == CollectiveCommPattern.GATHER_FWD_SPLIT_BWD:
res_list.append(f"comm_pattern:GATHER_FWD_SPLIT_BWD, ")
res_list.append(f"gather_dim:{self.gather_dim}, ")
res_list.append(f"shard_dim:{self.gather_dim}, ")
res_list.append(f"logical_process_axis:{self.logical_process_axis})")
elif self.comm_pattern == CollectiveCommPattern.ALL2ALL_FWD_ALL2ALL_BWD:
res_list.append(f"comm_pattern:ALL2ALL_FWD_ALL2ALL_BWD, ")
res_list.append(f"gather_dim:{self.gather_dim}, ")
res_list.append(f"shard_dim:{self.shard_dim}, ")
res_list.append(f"logical_process_axis: {self.logical_process_axis})")
elif self.comm_pattern == CollectiveCommPattern.SPLIT_FWD_GATHER_BWD:
res_list.append(f"comm_pattern:SPLIT_FWD_GATHER_BWD, ")
res_list.append(f"gather_dim:{self.gather_dim}, ")
res_list.append(f"shard_dim:{self.shard_dim}, ")
res_list.append(f"logical_process_axis:{self.logical_process_axis})")
elif self.comm_pattern == CollectiveCommPattern.ALLREDUCE_FWD_IDENTITY_BWD:
res_list.append(f"comm_pattern:ALLREDUCE_FWD_IDENTITY_BWD, ")
res_list.append(f"logical_process_axis:{self.logical_process_axis})")
elif self.comm_pattern == CollectiveCommPattern.IDENTITY_FWD_ALLREDUCE_BWD:
res_list.append(f"comm_pattern:IDENTITY_FWD_ALLREDUCE_BWD, ")
res_list.append(f"logical_process_axis:{self.logical_process_axis})")
return ''.join(res_list)
def covert_spec_to_action(self, tensor):
'''
Convert CommSpec into runtime action, implement real collection communication to target tensor.
The collection communication action is directed by the CommSpec.
Argument:
tensor(torch.Tensor): Tensor stored in each device, which could be different in different ranks.
'''
if self.comm_pattern in pattern_to_func_dict:
tensor = pattern_to_func_dict[self.comm_pattern](tensor, self)
else:
tensor = tensor
return tensor
def _all_gather(tensor: torch.Tensor, comm_spec: CommSpec):
'''
Implement all gather operation on device mesh based on information provided by comm_spec.
'''
process_groups_list = comm_spec.process_groups_dict[comm_spec.logical_process_axis]
for rank_list, process_group in process_groups_list:
if dist.get_rank() in rank_list:
tensor_list = [
torch.zeros(tensor.shape, dtype=tensor.dtype, device=tensor.device) for _ in range(len(rank_list))
]
# without this contiguous operation, the all gather may get some unexpected results.
tensor = tensor.contiguous()
dist.all_gather(tensor_list, tensor, group=process_group)
output = torch.cat(tuple(tensor_list), comm_spec.gather_dim).contiguous()
return output
def _split(tensor: torch.Tensor, comm_spec: CommSpec):
'''
Implement shard operation on device mesh based on information provided by comm_spec.
'''
process_groups_list = comm_spec.process_groups_dict[comm_spec.logical_process_axis]
for rank_list, _ in process_groups_list:
if dist.get_rank() in rank_list:
dim = comm_spec.shard_dim
length = tensor.shape[comm_spec.shard_dim] // len(rank_list)
start = length * rank_list.index(dist.get_rank())
output = torch.narrow(tensor, dim, start, length).contiguous()
return output
def _all_to_all(tensor: torch.Tensor, comm_spec: CommSpec):
'''
Implement all to all operation on device mesh based on information provided by comm_spec.
'''
process_groups_list = comm_spec.process_groups_dict[comm_spec.logical_process_axis]
for rank_list, process_group in process_groups_list:
if dist.get_rank() in rank_list:
new_shape = list(tensor.shape)
new_shape[comm_spec.shard_dim] = new_shape[comm_spec.shard_dim] // len(rank_list)
new_shape = torch.Size(new_shape)
output_tensor_list = [
torch.zeros(new_shape, dtype=tensor.dtype, device=tensor.device) for _ in range(len(rank_list))
]
dim = comm_spec.shard_dim
length = tensor.shape[comm_spec.shard_dim] // len(rank_list)
input_tensor_list = [
torch.narrow(tensor, dim, length * i, length).contiguous() for i in range(len(rank_list))
]
group = process_group
dist.all_to_all(output_tensor_list, input_tensor_list, group)
output = torch.cat(tuple(output_tensor_list), comm_spec.gather_dim).contiguous()
return output
def _all_reduce(tensor: torch.Tensor, comm_spec: CommSpec, async_op: bool = False):
'''
Implement all reduce operation on device mesh based on information provided by comm_spec.
'''
process_groups_list = comm_spec.process_groups_dict[comm_spec.logical_process_axis]
for rank_list, process_group in process_groups_list:
if dist.get_rank() in rank_list:
if not tensor.is_contiguous():
tensor = tensor.contiguous()
dist.all_reduce(tensor, op=ReduceOp.SUM, group=process_group, async_op=async_op)
return tensor
class _ReduceGrad(torch.autograd.Function):
"""
A customized communication operation which forward is an identity operation,
backward is all_reduce operation.
Args:
input_: input matrix.
comm_spec: comm_spec will give information like process group, rank list, etc.
"""
@staticmethod
def symbolic(graph, input_):
return input_
@staticmethod
def forward(ctx, input_, comm_spec):
ctx.comm_spec = comm_spec
return input_
@staticmethod
def backward(ctx, grad_output):
return _all_reduce(grad_output, ctx.comm_spec), None
class _ReduceInput(torch.autograd.Function):
"""
A customized communication operation which forward is all_reduce operation,
backward is an identity operation.
Args:
input_: input matrix.
comm_spec: comm_spec will give information like process group, rank list, etc.
"""
@staticmethod
def symbolic(graph, input_):
return _all_reduce(input_)
@staticmethod
def forward(ctx, input_, comm_spec):
return _all_reduce(input_, comm_spec)
@staticmethod
def backward(ctx, grad_output):
return grad_output, None
class _SplitForwardGatherBackward(torch.autograd.Function):
"""
A customized communication operation which forward is split operation,
backward is an all gather operation.
Args:
input_: input matrix.
comm_spec: comm_spec will give information like process group, rank list, etc.
"""
@staticmethod
def symbolic(graph, input_):
return _split(input_)
@staticmethod
def forward(ctx, input_, comm_spec):
ctx.comm_spec = comm_spec
return _split(input_, comm_spec)
@staticmethod
def backward(ctx, grad_output):
return _all_gather(grad_output, ctx.comm_spec), None
class _GatherForwardSplitBackward(torch.autograd.Function):
"""
A customized communication operation which forward is an all gather operation,
backward is split operation.
Args:
input_: input matrix.
comm_spec: comm_spec will give information like process group, rank list, etc.
"""
@staticmethod
def symbolic(graph, input_):
return _all_gather(input_)
@staticmethod
def forward(ctx, input_, comm_spec):
ctx.comm_spec = comm_spec
return _all_gather(input_, comm_spec)
@staticmethod
def backward(ctx, grad_output):
return _split(grad_output, ctx.comm_spec), None
class _AllToAll(torch.autograd.Function):
"""
A customized communication operation which forward is an all to all operation,
backward is an all to all operation.
Args:
input_: input matrix.
comm_spec: comm_spec will give information like process group, rank list, etc.
"""
@staticmethod
def symbolic(graph, input_):
return _all_to_all(input_)
@staticmethod
def forward(ctx, input_, comm_spec):
output = _all_to_all(input_, comm_spec)
comm_spec_for_backward = CommSpec(comm_pattern=comm_spec.comm_pattern,
process_groups_dict=comm_spec.process_groups_dict,
gather_dim=comm_spec.shard_dim,
shard_dim=comm_spec.gather_dim,
logical_process_axis=comm_spec.logical_process_axis)
ctx.comm_spec = comm_spec_for_backward
return output
@staticmethod
def backward(ctx, grad_outputs):
return _all_to_all(grad_outputs, ctx.comm_spec), None
def reduce_grad(input_, comm_spec):
return _ReduceGrad.apply(input_, comm_spec)
def reduce_input(input_, comm_spec):
return _ReduceInput.apply(input_, comm_spec)
def split_forward_gather_backward(input_, comm_spec):
return _SplitForwardGatherBackward.apply(input_, comm_spec)
def gather_forward_split_backward(input_, comm_spec):
return _GatherForwardSplitBackward.apply(input_, comm_spec)
def all_to_all(input_, comm_spec):
return _AllToAll.apply(input_, comm_spec)
pattern_to_func_dict = {
CollectiveCommPattern.GATHER_FWD_SPLIT_BWD: gather_forward_split_backward,
CollectiveCommPattern.ALL2ALL_FWD_ALL2ALL_BWD: all_to_all,
CollectiveCommPattern.SPLIT_FWD_GATHER_BWD: split_forward_gather_backward,
CollectiveCommPattern.ALLREDUCE_FWD_IDENTITY_BWD: reduce_input,
CollectiveCommPattern.IDENTITY_FWD_ALLREDUCE_BWD: reduce_grad,
}

View File

@ -171,7 +171,7 @@ class ShardingSpec:
raise ShardingOutOfIndexError(
f'sharding_sequence should have {self.dims} elements, but got index {len(self.sharding_sequence)}.')
if max(list(self.dim_partition_dict.keys())) >= self.dims:
if list(self.dim_partition_dict.keys()) and max(list(self.dim_partition_dict.keys())) >= self.dims:
raise ShardingOutOfIndexError(
f'the key of dim_partition_dict should be less than {self.dims}, but got {max(list(self.dim_partition_dict.keys()))}.'
)

View File

@ -0,0 +1,190 @@
from functools import partial
import pytest
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
from torch.distributed import ReduceOp
from colossalai.core import global_context as gpc
from colossalai.device.device_mesh import DeviceMesh
from colossalai.initialize import launch
from colossalai.logging import disable_existing_loggers
from colossalai.tensor.d_tensor.comm_spec import CollectiveCommPattern, CommSpec
from colossalai.tensor.d_tensor.sharding_spec import ShardingSpec
from colossalai.testing import rerun_if_address_is_in_use
from colossalai.utils import free_port
def check_all_gather(process_groups_dict, rank):
# tensor to comm
if rank in (0, 2):
sharded_tensor_to_comm = torch.ones(2, 2).cuda()
else:
sharded_tensor_to_comm = torch.zeros(2, 2).cuda()
# tensor to check
tensor_to_check = torch.cat((torch.ones(2, 2), torch.zeros(2, 2)), 1).cuda()
# CommSpec:(comm_pattern:allgather, gather_dim:1, logical_process_axis:1)
comm_spec = CommSpec(CollectiveCommPattern.GATHER_FWD_SPLIT_BWD,
process_groups_dict,
gather_dim=1,
logical_process_axis=1)
sharded_tensor_to_comm = sharded_tensor_to_comm = comm_spec.covert_spec_to_action(sharded_tensor_to_comm)
assert sharded_tensor_to_comm.equal(tensor_to_check)
def check_shard(process_groups_dict, rank):
# tensor to comm
sharded_tensor_to_comm_0 = torch.zeros(2, 2).cuda()
sharded_tensor_to_comm_1 = torch.ones(2, 2).cuda()
# tensor([[0., 0., 1., 1.],
# [0., 0., 1., 1.]])
tensor_to_shard = torch.cat((sharded_tensor_to_comm_0, sharded_tensor_to_comm_1), 1)
# CommSpec:(comm_pattern:shard, shard_dim:1, logical_process_axis:1)
comm_spec = CommSpec(CollectiveCommPattern.SPLIT_FWD_GATHER_BWD,
process_groups_dict,
shard_dim=1,
logical_process_axis=1)
tensor_to_shard = comm_spec.covert_spec_to_action(tensor_to_shard)
if rank in (0, 2):
assert tensor_to_shard.equal(sharded_tensor_to_comm_0)
if rank in (1, 3):
assert tensor_to_shard.equal(sharded_tensor_to_comm_1)
def check_all_to_all(process_groups_dict, rank):
# tensor to comm
if rank in (0, 1):
sharded_tensor_0 = torch.zeros(2, 1)
sharded_tensor_1 = torch.ones(2, 1)
# tensor([[0., 1.],
# [0., 1.]])
tensor_to_comm = torch.cat((sharded_tensor_0, sharded_tensor_1), 1).cuda()
if rank in (2, 3):
sharded_tensor_0 = torch.ones(2, 1) * 2
sharded_tensor_1 = torch.ones(2, 1) * 3
# tensor([[2., 3.],
# [2., 3.]])
tensor_to_comm = torch.cat((sharded_tensor_0, sharded_tensor_1), 1).cuda()
if rank in (0, 1):
# tensor([[0.],
# [0.],
# [2.],
# [2.]])
tensor_to_check = torch.tensor([[0], [0], [2], [2]], dtype=tensor_to_comm.dtype).cuda()
if rank in (2, 3):
# tensor([[1.],
# [1.],
# [3.],
# [3.]])
tensor_to_check = torch.tensor([[1], [1], [3], [3]], dtype=tensor_to_comm.dtype).cuda()
# CommSpec:(comm_pattern:shard, shard_dim:1, logical_process_axis:1)
comm_spec = CommSpec(CollectiveCommPattern.ALL2ALL_FWD_ALL2ALL_BWD,
process_groups_dict,
gather_dim=0,
shard_dim=1,
logical_process_axis=0)
tensor_to_comm = comm_spec.covert_spec_to_action(tensor_to_comm)
assert tensor_to_comm.equal(tensor_to_check)
def check_all_reduce_fwd(process_groups_dict, rank):
# tensor to comm
tensor_to_comm = torch.ones(2, 2).cuda() * rank
# reduce through logical process axis 0
# tensor to check
if rank in (0, 2):
# tensor([[2., 2.],
# [2., 2.]])
tensor_to_check = torch.tensor([[2, 2], [2, 2]], dtype=tensor_to_comm.dtype).cuda()
if rank in (1, 3):
# tensor([[4., 4.],
# [4., 4.]])
tensor_to_check = torch.tensor([[4, 4], [4, 4]], dtype=tensor_to_comm.dtype).cuda()
comm_spec = CommSpec(CollectiveCommPattern.ALLREDUCE_FWD_IDENTITY_BWD, process_groups_dict, logical_process_axis=0)
tensor_to_comm = comm_spec.covert_spec_to_action(tensor_to_comm)
assert tensor_to_comm.equal(tensor_to_check)
def check_all_reduce_bwd(process_groups_dict, rank):
# tensor to comm
tensor_to_comm = torch.ones(2, 2).cuda() * rank
tensor_to_check = torch.ones(2, 2).cuda() * rank
comm_spec = CommSpec(CollectiveCommPattern.IDENTITY_FWD_ALLREDUCE_BWD, process_groups_dict, logical_process_axis=0)
tensor_to_comm = comm_spec.covert_spec_to_action(tensor_to_comm)
assert tensor_to_comm.equal(tensor_to_check)
def check_all_reduce_in_flatten_device_mesh(process_groups_dict, rank):
# tensor to comm
tensor_to_comm = torch.ones(2, 2).cuda() * rank
# reduce through logical process axis 0 at flatten device mesh
# tensor to check
# tensor([[6., 6.],
# [6., 6.]])
tensor_to_check = torch.tensor([[6, 6], [6, 6]], dtype=tensor_to_comm.dtype).cuda()
# CommSpec:(comm_pattern:all_reduce, logical_process_axis:[0, 1])
comm_spec = CommSpec(CollectiveCommPattern.ALLREDUCE_FWD_IDENTITY_BWD, process_groups_dict, logical_process_axis=0)
tensor_to_comm = comm_spec.covert_spec_to_action(tensor_to_comm)
assert tensor_to_comm.equal(tensor_to_check)
def check_comm(rank, world_size, port):
disable_existing_loggers()
launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
physical_mesh_id = torch.arange(0, 4)
assert rank == gpc.get_global_rank()
mesh_shape = (2, 2)
# [[0, 1,
# [2, 3]]
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True)
process_groups_dict = device_mesh.process_groups_dict
# test all gather
check_all_gather(process_groups_dict, rank)
# test shard
check_shard(process_groups_dict, rank)
# test all to all
check_all_to_all(process_groups_dict, rank)
# test all reduce
check_all_reduce_fwd(process_groups_dict, rank)
check_all_reduce_bwd(process_groups_dict, rank)
flatten_process_groups_dict = device_mesh.flatten_device_mesh.process_groups_dict
# test all reduce in 1D flatten device mesh
check_all_reduce_in_flatten_device_mesh(flatten_process_groups_dict, rank)
gpc.destroy()
@pytest.mark.dist
@rerun_if_address_is_in_use()
def test_comm_spec():
world_size = 4
run_func = partial(check_comm, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_comm_spec()