mirror of https://github.com/hpcaitech/ColossalAI
hotfix tensor unittest bugs (#862)
parent
1258af71cc
commit
29159d9b5b
|
@ -8,6 +8,7 @@ from colossalai.core import global_context as gpc
|
||||||
from packaging import version
|
from packaging import version
|
||||||
from colossalai.utils.cuda import get_current_device
|
from colossalai.utils.cuda import get_current_device
|
||||||
|
|
||||||
|
|
||||||
@colo_op_impl(torch.nn.functional.linear)
|
@colo_op_impl(torch.nn.functional.linear)
|
||||||
def colo_linear(types, args, kwargs, pg):
|
def colo_linear(types, args, kwargs, pg):
|
||||||
"""Handles ``__torch_function__`` dispatch for ``torch.nn.functional.linear``.
|
"""Handles ``__torch_function__`` dispatch for ``torch.nn.functional.linear``.
|
||||||
|
@ -34,13 +35,13 @@ def colo_linear(types, args, kwargs, pg):
|
||||||
elif weight.shard_spec == '1Drow':
|
elif weight.shard_spec == '1Drow':
|
||||||
# Input:S[1] x Weight:S[0] = Output:P
|
# Input:S[1] x Weight:S[0] = Output:P
|
||||||
# All-Reduce(Output) + bias = res
|
# All-Reduce(Output) + bias = res
|
||||||
assert divide(input_tensor.shape[-1], gpc.tensor_parallel_size) == weight.size[-1], \
|
assert divide(input_tensor.shape[-1], gpc.tensor_parallel_size) == weight.size(-1), \
|
||||||
'Invalid shapes in 1Drow forward: input={}, weight={}. Expected last dim of input {}.'.format(
|
'Invalid shapes in 1Drow forward: input={}, weight={}. Expected last dim of input {}.'.format(
|
||||||
input_tensor.shape, weight.size, weight.size[-1] * gpc.tensor_parallel_size)
|
input_tensor.shape, weight.size, weight.size[-1] * gpc.tensor_parallel_size)
|
||||||
# Input:S[1]
|
# Input:S[1]
|
||||||
input_per_partition = split_forward_gather_backward(input_tensor, ParallelMode.PARALLEL_1D, dim=-1)
|
input_per_partition = split_forward_gather_backward(input_tensor, ParallelMode.PARALLEL_1D, dim=-1)
|
||||||
# Output:P
|
# Output:P
|
||||||
device = get_current_device() # TODO where to put to(deivce)?
|
device = get_current_device() # TODO where to put to(deivce)?
|
||||||
weight_ = weight.torch_tensor().to(device)
|
weight_ = weight.torch_tensor().to(device)
|
||||||
partial_output = torch.nn.functional.linear(input_per_partition, weight_)
|
partial_output = torch.nn.functional.linear(input_per_partition, weight_)
|
||||||
# Reduce(Output)
|
# Reduce(Output)
|
||||||
|
@ -50,7 +51,7 @@ def colo_linear(types, args, kwargs, pg):
|
||||||
bias_ = bias.to(device)
|
bias_ = bias.to(device)
|
||||||
output = output + bias_
|
output = output + bias_
|
||||||
return output
|
return output
|
||||||
|
|
||||||
else:
|
else:
|
||||||
raise NotImplementedError
|
raise NotImplementedError
|
||||||
else:
|
else:
|
||||||
|
|
Loading…
Reference in New Issue