init openfold

pull/2364/head
oahzxl 2022-12-29 15:01:15 +08:00
parent efe6fe3a33
commit 289f3a45c2
6 changed files with 570 additions and 0 deletions

View File

@ -0,0 +1,59 @@
import torch
import torch.nn as nn
from .msa import MSAStack
from .ops import OutProductMean
from .triangle import PairStack
def print_memory(init_mem, text=None):
now_mem = torch.cuda.memory_allocated() / 1024 ** 2 - init_mem
max_mem = torch.cuda.max_memory_allocated() / 1024 ** 2 - init_mem
print("%s now:%.2f max:%.2f" % ("" if text is None else text, now_mem, max_mem))
torch.cuda.reset_peak_memory_stats()
class EvoformerBlock(nn.Module):
def __init__(self, d_node, d_pair):
super(EvoformerBlock, self).__init__()
self.msa_stack = MSAStack(d_node, d_pair, p_drop=0.15)
self.communication = OutProductMean(n_feat=d_node, n_feat_out=d_pair, n_feat_proj=32)
self.pair_stack = PairStack(d_pair=d_pair)
def forward(self, node, pair):
node = self.msa_stack(node, pair)
pair = pair + self.communication(node)
pair = self.pair_stack(pair)
return node, pair
class Evoformer(nn.Module):
def __init__(self, d_node, d_pair):
super(Evoformer, self).__init__()
self.blocks = nn.ModuleList()
for _ in range(1):
self.blocks.append(EvoformerBlock(d_node, d_pair))
def forward(self, node, pair):
for b in self.blocks:
node, pair = b(node, pair)
return node, pair
def evoformer_tiny():
return Evoformer(d_node=64, d_pair=32)
def evoformer_base():
return Evoformer(d_node=256, d_pair=128)
def evoformer_large():
return Evoformer(d_node=512, d_pair=256)
__all__ = ['Evoformer', 'evoformer_base', 'evoformer_large']

View File

@ -0,0 +1,29 @@
import math
import numpy as np
import torch.nn as nn
def glorot_uniform_af(x, gain=1.0):
"""
initialize tensors the same as xavier_initializer in PyTorch, but the dimensions are different:
In PyTorch:
[feature_out, feature_in, n_head ...]
In Jax:
[... n_head, feature_in, feature_out]
However, there is a feature in original Alphafold2 code that they use the Jax version initializer to initialize tensors like:
[feature_in, n_head, feature_out]
In this function, we keep this feature to initialize [feature_in, n_head, ..., feature_out] tensors
"""
fan_in, fan_out = x.shape[-2:]
if len(x.shape) > 2:
receptive_field_size = np.prod(x.shape[:-2])
fan_in *= receptive_field_size
fan_out *= receptive_field_size
std = gain * math.sqrt(2.0 / float(fan_in + fan_out))
dev = math.sqrt(3.0) * std # Calculate uniform bounds from standard deviation
nn.init.uniform_(x, -dev, dev)
return x

View File

@ -0,0 +1,19 @@
import torch
import torch.nn.functional as F
def bias_sigmod_ele(y, bias, z):
return torch.sigmoid(y + bias) * z
def bias_dropout_add(x: torch.Tensor, bias: torch.Tensor, dropmask: torch.Tensor,
residual: torch.Tensor, prob: float) -> torch.Tensor:
out = (x + bias) * F.dropout(dropmask, p=prob, training=False)
out = residual + out
return out
def bias_ele_dropout_residual(ab: torch.Tensor, b: torch.Tensor, g: torch.Tensor,
dropout_mask: torch.Tensor, Z_raw: torch.Tensor,
prob: float) -> torch.Tensor:
return Z_raw + F.dropout(dropout_mask, p=prob, training=True) * (g * (ab + b))

95
evoformer_openfold/msa.py Normal file
View File

@ -0,0 +1,95 @@
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from torch.nn import LayerNorm
from .kernel import bias_dropout_add
from .ops import SelfAttention, Transition
class MSARowAttentionWithPairBias(nn.Module):
def __init__(self, d_node, d_pair, c=32, n_head=8, p_drop=0.15):
super(MSARowAttentionWithPairBias, self).__init__()
self.d_node = d_node
self.d_pair = d_pair
self.c = c
self.n_head = n_head
self.p_drop = p_drop
self.layernormM = LayerNorm(d_node)
self.layernormZ = LayerNorm(d_pair)
_init_weights = torch.nn.init.normal_(torch.zeros([n_head, d_pair]),
std=1.0 / math.sqrt(d_pair))
self.linear_b_weights = nn.parameter.Parameter(data=_init_weights, requires_grad=True)
self.attention = SelfAttention(qkv_dim=d_node,
c=c,
n_head=n_head,
out_dim=d_node,
gating=True,
last_bias_fuse=True)
self.out_bias = nn.parameter.Parameter(data=torch.zeros((d_node,)), requires_grad=True)
def forward(self, M_raw, Z):
## Input projections
M = self.layernormM(M_raw)
Z = self.layernormZ(Z)
b = F.linear(Z, self.linear_b_weights)
b = b.permute(0, 3, 1, 2)
# b = rearrange(b, 'b q k h -> b h q k')
M = self.attention(M, b)
dropout_mask = torch.ones_like(M[:, 0:1, :, :]).to(M.device).to(M.dtype)
return bias_dropout_add(M, self.out_bias, dropout_mask, M_raw, prob=self.p_drop)
class MSAColumnAttention(nn.Module):
def __init__(self, d_node, c=32, n_head=8):
super(MSAColumnAttention, self).__init__()
self.d_node = d_node
self.c = c
self.n_head = n_head
self.layernormM = LayerNorm(d_node)
self.attention = SelfAttention(qkv_dim=d_node,
c=c,
n_head=n_head,
out_dim=d_node,
gating=True)
def forward(self, M_raw):
M = M_raw.transpose(-2, -3)
M = self.layernormM(M)
M = self.attention(M)
M = M.transpose(-2, -3)
return M_raw + M
class MSAStack(nn.Module):
def __init__(self, d_node, d_pair, p_drop=0.15):
super(MSAStack, self).__init__()
self.MSARowAttentionWithPairBias = MSARowAttentionWithPairBias(d_node=d_node,
d_pair=d_pair,
p_drop=p_drop)
self.MSAColumnAttention = MSAColumnAttention(d_node=d_node)
self.MSATransition = Transition(d=d_node)
def forward(self, node, pair):
node = self.MSARowAttentionWithPairBias(node, pair)
node = self.MSAColumnAttention(node)
node = self.MSATransition(node)
return node

176
evoformer_openfold/ops.py Executable file
View File

@ -0,0 +1,176 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from torch.nn import LayerNorm
from .initializer import glorot_uniform_af
from .kernel import bias_sigmod_ele
class DropoutRowwise(nn.Module):
def __init__(self, p):
super(DropoutRowwise, self).__init__()
self.p = p
self.dropout = nn.Dropout(p=p)
def forward(self, x):
dropout_mask = torch.ones_like(x[:, 0:1, :, :])
dropout_mask = self.dropout(dropout_mask)
return dropout_mask * x
class DropoutColumnwise(nn.Module):
def __init__(self, p):
super(DropoutColumnwise, self).__init__()
self.p = p
self.dropout = nn.Dropout(p=p)
def forward(self, x):
dropout_mask = torch.ones_like(x[:, :, 0:1, :])
dropout_mask = self.dropout(dropout_mask)
return dropout_mask * x
class Transition(nn.Module):
def __init__(self, d, n=4):
super(Transition, self).__init__()
self.norm = LayerNorm(d)
self.linear1 = Linear(d, n * d, initializer='relu')
self.linear2 = Linear(n * d, d, initializer='zeros')
def forward(self, src):
x = self.norm(src)
x = self.linear2(F.relu(self.linear1(x)))
return src + x
class OutProductMean(nn.Module):
def __init__(self, n_feat=64, n_feat_out=128, n_feat_proj=32):
super(OutProductMean, self).__init__()
self.layernormM = LayerNorm(n_feat)
self.linear_a = Linear(n_feat, n_feat_proj)
self.linear_b = Linear(n_feat, n_feat_proj)
self.o_linear = Linear(n_feat_proj * n_feat_proj,
n_feat_out,
initializer='zero',
use_bias=True)
def forward(self, M):
M = self.layernormM(M)
left_act = self.linear_a(M)
right_act = self.linear_b(M)
O = torch.einsum('bsid,bsje->bijde', left_act, right_act).contiguous()
# O = rearrange(O, 'b i j d e -> b i j (d e)')
O = O.reshape(O.shape[0], O.shape[1], O.shape[2], -1)
Z = self.o_linear(O)
return Z
class Linear(nn.Linear):
"""
A Linear layer with built-in nonstandard initializations. Called just
like torch.nn.Linear.
Implements the initializers in 1.11.4, plus some additional ones found
in the code.
"""
def __init__(
self,
feature_in: int,
feature_out: int,
initializer: str = 'linear',
use_bias: bool = True,
bias_init: float = 0.,
):
super(Linear, self).__init__(feature_in, feature_out, bias=use_bias)
self.use_bias = use_bias
if initializer == 'linear':
glorot_uniform_af(self.weight, gain=1.0)
elif initializer == 'relu':
glorot_uniform_af(self.weight, gain=2.0)
elif initializer == 'zeros':
nn.init.zeros_(self.weight)
if self.use_bias:
with torch.no_grad():
self.bias.fill_(bias_init)
class SelfAttention(nn.Module):
"""
Multi-Head SelfAttention dealing with [batch_size1, batch_size2, len, dim] tensors
"""
def __init__(self, qkv_dim, c, n_head, out_dim, gating=True, last_bias_fuse=False):
super(SelfAttention, self).__init__()
self.qkv_dim = qkv_dim
self.c = c
self.n_head = n_head
self.out_dim = out_dim
self.gating = gating
self.last_bias_fuse = last_bias_fuse
self.scaling = self.c**(-0.5)
# self.to_qkv = Linear(qkv_dim, 3 * n_head * c, initializer='linear')
self.to_q = Linear(qkv_dim, n_head * c, initializer='linear', use_bias=False)
self.to_k = Linear(qkv_dim, n_head * c, initializer='linear', use_bias=False)
self.to_v = Linear(qkv_dim, n_head * c, initializer='linear', use_bias=False)
if gating:
self.gating_bias = nn.parameter.Parameter(data=torch.ones((n_head * c,)))
self.gating_linear = Linear(qkv_dim, n_head * c, initializer='zero', use_bias=False)
self.o_linear = Linear(n_head * c,
out_dim,
initializer='zero',
use_bias=(not last_bias_fuse))
def forward(self, in_data, nonbatched_bias=None):
"""
:param in_data: [batch_size1, batch_size2, len_qkv, qkv_dim]
:param bias: None or [batch_size1, batch_size2, n_head, len_q, len_kv]
:param nonbatched_bias: None or [batch_size1, n_head, len_q, len_kv]
"""
# qkv = self.to_qkv(in_data).chunk(3, dim=-1)
# q, k, v = map(lambda t: rearrange(t, 'b1 b2 n (h d) -> b1 b2 h n d', h=self.n_head), qkv)
q = self.to_q(in_data)
k = self.to_k(in_data)
v = self.to_v(in_data)
# q, k, v = map(lambda t: rearrange(t, 'b1 b2 n (h d) -> b1 b2 h n d', h=self.n_head),
# [q, k, v])
q, k, v = map(lambda t: t.view(t.shape[0], t.shape[1], t.shape[2], self.n_head, -1).permute(0, 1, 3, 2, 4),
[q, k, v])
q = q * self.scaling
logits = torch.matmul(q, k.transpose(-1, -2))
if nonbatched_bias is not None:
logits += nonbatched_bias.unsqueeze(1)
weights = torch.softmax(logits, dim=-1)
# weights = softmax(logits)
weighted_avg = torch.matmul(weights, v)
# weighted_avg = rearrange(weighted_avg, 'b1 b2 h n d -> b1 b2 n (h d)')
weighted_avg = weighted_avg.permute(0, 1, 3, 2, 4)
weighted_avg = weighted_avg.reshape(weighted_avg.shape[0], weighted_avg.shape[1], weighted_avg.shape[2], -1)
if self.gating:
gate_values = self.gating_linear(in_data)
weighted_avg = bias_sigmod_ele(gate_values, self.gating_bias, weighted_avg)
output = self.o_linear(weighted_avg)
return output

View File

@ -0,0 +1,192 @@
import math
import torch
import torch.nn as nn
from torch.nn import LayerNorm
from .kernel import bias_dropout_add, bias_ele_dropout_residual
from .ops import Linear, SelfAttention, Transition
def permute_final_dims(tensor, inds):
zero_index = -1 * len(inds)
first_inds = list(range(len(tensor.shape[:zero_index])))
return tensor.permute(first_inds + [zero_index + i for i in inds])
class TriangleMultiplicationOutgoing(nn.Module):
def __init__(self, d_pair, p_drop, c=128):
super(TriangleMultiplicationOutgoing, self).__init__()
self.d_pair = d_pair
self.c = c
self.layernorm1 = LayerNorm(d_pair)
self.left_projection = Linear(d_pair, c)
self.right_projection = Linear(d_pair, c)
self.left_gate = Linear(d_pair, c, initializer='zeros', bias_init=1.)
self.right_gate = Linear(d_pair, c, initializer='zeros', bias_init=1.)
self.output_gate = Linear(d_pair, d_pair, initializer='zeros', bias_init=1.)
self.layernorm2 = LayerNorm(c)
self.output_projection = Linear(d_pair, d_pair, initializer='zeros', use_bias=False)
self.output_bias = nn.parameter.Parameter(data=torch.zeros((d_pair,)), requires_grad=True)
self.p_drop = p_drop
def forward(self, Z_raw):
Z = self.layernorm1(Z_raw)
left_proj_act = self.left_projection(Z)
right_proj_act = self.right_projection(Z)
left_proj_act = left_proj_act * torch.sigmoid(self.left_gate(Z))
right_proj_act = right_proj_act * torch.sigmoid(self.right_gate(Z))
g = torch.sigmoid(self.output_gate(Z))
# p = torch.matmul(
# permute_final_dims(left_proj_act, (2, 0, 1)),
# permute_final_dims(right_proj_act, (2, 1, 0)),
# )
# ab = permute_final_dims(p, (1, 2, 0))
ab = torch.einsum('bikd,bjkd->bijd', left_proj_act, right_proj_act)
ab = self.output_projection(self.layernorm2(ab))
dropout_mask = torch.ones_like(Z[:, 0:1, :, :]).to(Z.device).to(Z.dtype)
return bias_ele_dropout_residual(ab,
self.output_bias,
g,
dropout_mask,
Z_raw,
prob=self.p_drop)
class TriangleMultiplicationIncoming(nn.Module):
def __init__(self, d_pair, p_drop, c=128):
super(TriangleMultiplicationIncoming, self).__init__()
self.d_pair = d_pair
self.c = c
self.layernorm1 = LayerNorm(d_pair)
self.left_projection = Linear(d_pair, c)
self.right_projection = Linear(d_pair, c)
self.left_gate = Linear(d_pair, c, initializer='zeros', bias_init=1.)
self.right_gate = Linear(d_pair, c, initializer='zeros', bias_init=1.)
self.output_gate = Linear(d_pair, d_pair, initializer='zeros', bias_init=1.)
self.layernorm2 = LayerNorm(c)
self.output_projection = Linear(d_pair, d_pair, initializer='zeros', use_bias=False)
self.output_bias = nn.parameter.Parameter(data=torch.zeros((d_pair,)), requires_grad=True)
self.p_drop = p_drop
def forward(self, Z_raw):
Z = self.layernorm1(Z_raw)
left_proj_act = self.left_projection(Z)
right_proj_act = self.right_projection(Z)
left_proj_act = left_proj_act * torch.sigmoid(self.left_gate(Z))
right_proj_act = right_proj_act * torch.sigmoid(self.right_gate(Z))
g = torch.sigmoid(self.output_gate(Z))
# p = torch.matmul(
# permute_final_dims(left_proj_act, (2, 1, 0)),
# permute_final_dims(right_proj_act, (2, 0, 1)),
# )
# ab = permute_final_dims(p, (1, 2, 0))
ab = torch.einsum('bkid,bkjd->bijd', left_proj_act, right_proj_act)
ab = self.output_projection(self.layernorm2(ab))
dropout_mask = torch.ones_like(Z[:, 0:1, :, :]).to(Z.device).to(Z.dtype)
return bias_ele_dropout_residual(ab,
self.output_bias,
g,
dropout_mask,
Z_raw,
prob=self.p_drop)
class TriangleAttentionStartingNode(nn.Module):
def __init__(self, d_pair, p_drop, c=32, n_head=4):
super(TriangleAttentionStartingNode, self).__init__()
self.d_pair = d_pair
self.c = c
self.n_head = n_head
self.p_drop = p_drop
self.layernorm1 = LayerNorm(d_pair)
_init_weights = torch.nn.init.normal_(torch.zeros([d_pair, n_head]),
std=1.0 / math.sqrt(d_pair))
self.linear_b_weights = nn.parameter.Parameter(data=_init_weights)
self.attention = SelfAttention(qkv_dim=d_pair,
c=c,
n_head=n_head,
out_dim=d_pair,
gating=True,
last_bias_fuse=True)
self.out_bias = nn.parameter.Parameter(data=torch.zeros((d_pair,)), requires_grad=True)
def forward(self, Z_raw):
Z = self.layernorm1(Z_raw)
b = torch.einsum('bqkc,ch->bhqk', Z, self.linear_b_weights)
Z = self.attention(Z, b)
dropout_mask = torch.ones_like(Z[:, 0:1, :, :]).to(Z.device).to(Z.dtype)
return bias_dropout_add(Z, self.out_bias, dropout_mask, Z_raw, prob=self.p_drop)
class TriangleAttentionEndingNode(nn.Module):
def __init__(self, d_pair, p_drop, c=32, n_head=4):
super(TriangleAttentionEndingNode, self).__init__()
self.d_pair = d_pair
self.c = c
self.n_head = n_head
self.p_drop = p_drop
self.layernorm1 = LayerNorm(d_pair)
_init_weights = torch.nn.init.normal_(torch.zeros([d_pair, n_head]),
std=1.0 / math.sqrt(d_pair))
self.linear_b_weights = nn.parameter.Parameter(data=_init_weights)
self.attention = SelfAttention(qkv_dim=d_pair,
c=c,
n_head=n_head,
out_dim=d_pair,
gating=True,
last_bias_fuse=True)
self.out_bias = nn.parameter.Parameter(data=torch.zeros((d_pair,)), requires_grad=True)
def forward(self, Z_raw):
Z = Z_raw.transpose(-2, -3)
Z = self.layernorm1(Z)
b = torch.einsum('bqkc,ch->bhqk', Z, self.linear_b_weights)
Z = self.attention(Z, b)
Z = Z.transpose(-2, -3)
dropout_mask = torch.ones_like(Z[:, :, 0:1, :]).to(Z.device).to(Z.dtype)
return bias_dropout_add(Z, self.out_bias, dropout_mask, Z_raw, prob=self.p_drop)
class PairStack(nn.Module):
def __init__(self, d_pair, p_drop=0.25):
super(PairStack, self).__init__()
self.TriangleMultiplicationOutgoing = TriangleMultiplicationOutgoing(d_pair, p_drop=p_drop)
self.TriangleMultiplicationIncoming = TriangleMultiplicationIncoming(d_pair, p_drop=p_drop)
self.TriangleAttentionStartingNode = TriangleAttentionStartingNode(d_pair, p_drop=p_drop)
self.TriangleAttentionEndingNode = TriangleAttentionEndingNode(d_pair, p_drop=p_drop)
self.PairTransition = Transition(d=d_pair)
def forward(self, pair):
pair = self.TriangleMultiplicationOutgoing(pair)
pair = self.TriangleMultiplicationIncoming(pair)
pair = self.TriangleAttentionStartingNode(pair)
pair = self.TriangleAttentionEndingNode(pair)
pair = self.PairTransition(pair)
return pair