mirror of https://github.com/hpcaitech/ColossalAI
[Gemini] GeminiDPP convert to PyTorch Module. (#2151)
parent
bdef9dfdbe
commit
2827f41898
|
@ -2,6 +2,7 @@ import torch
|
||||||
import torch.distributed as dist
|
import torch.distributed as dist
|
||||||
|
|
||||||
from colossalai.gemini.chunk import Chunk
|
from colossalai.gemini.chunk import Chunk
|
||||||
|
from colossalai.tensor import ColoTensor
|
||||||
from colossalai.utils import get_current_device
|
from colossalai.utils import get_current_device
|
||||||
|
|
||||||
|
|
||||||
|
@ -19,3 +20,30 @@ def get_temp_total_chunk_on_cuda(chunk: Chunk):
|
||||||
dist.all_gather(tensor_list=gather_list, tensor=shard_temp, group=chunk.torch_pg)
|
dist.all_gather(tensor_list=gather_list, tensor=shard_temp, group=chunk.torch_pg)
|
||||||
|
|
||||||
return total_temp
|
return total_temp
|
||||||
|
|
||||||
|
|
||||||
|
def _add_param(model, name, param):
|
||||||
|
name_list = name.split('.')
|
||||||
|
module = model._modules[name_list[0]]
|
||||||
|
for i in range(1, len(name_list) - 1):
|
||||||
|
module = module._modules[name_list[i]]
|
||||||
|
module._parameters[name_list[-1]] = param
|
||||||
|
|
||||||
|
|
||||||
|
def convert_to_torch_module(gemini_ddp_model) -> torch.nn.Module:
|
||||||
|
"""convert_to_torch_module
|
||||||
|
|
||||||
|
Args:
|
||||||
|
gemini_ddp_model (GeminiDDP): a gemini ddp model
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
torch.nn.Module: a torch model contains the params of gemini_ddp_model
|
||||||
|
"""
|
||||||
|
module = gemini_ddp_model.module
|
||||||
|
|
||||||
|
for n, p in module.named_parameters():
|
||||||
|
if isinstance(p, ColoTensor):
|
||||||
|
p.to_replicate_()
|
||||||
|
_add_param(module, n, p.data)
|
||||||
|
|
||||||
|
return module
|
||||||
|
|
|
@ -103,7 +103,6 @@ class ColoTensor(torch.Tensor):
|
||||||
self.process_group = spec.pg
|
self.process_group = spec.pg
|
||||||
|
|
||||||
self._type = TensorType.NONMODEL
|
self._type = TensorType.NONMODEL
|
||||||
self._graph_node = None
|
|
||||||
|
|
||||||
def has_compute_spec(self) -> bool:
|
def has_compute_spec(self) -> bool:
|
||||||
return self.compute_spec is not None
|
return self.compute_spec is not None
|
||||||
|
|
|
@ -0,0 +1,48 @@
|
||||||
|
from functools import partial
|
||||||
|
|
||||||
|
import pytest
|
||||||
|
import torch.multiprocessing as mp
|
||||||
|
|
||||||
|
import colossalai
|
||||||
|
from colossalai.nn.parallel.utils import convert_to_torch_module
|
||||||
|
from colossalai.tensor import ColoTensor
|
||||||
|
from colossalai.testing import parameterize, rerun_if_address_is_in_use
|
||||||
|
from colossalai.utils import free_port
|
||||||
|
from colossalai.utils.cuda import get_current_device
|
||||||
|
from colossalai.utils.model.colo_init_context import ColoInitContext
|
||||||
|
from tests.components_to_test.registry import non_distributed_component_funcs
|
||||||
|
|
||||||
|
|
||||||
|
@parameterize('model_name', ['resnet18', 'bert'])
|
||||||
|
def run_convert_torch_module(model_name: str):
|
||||||
|
get_components_func = non_distributed_component_funcs.get_callable(model_name)
|
||||||
|
model_builder, _, _, _, _ = get_components_func()
|
||||||
|
|
||||||
|
with ColoInitContext(device='cpu'):
|
||||||
|
model = model_builder(checkpoint=False)
|
||||||
|
|
||||||
|
from colossalai.nn.parallel import GeminiDDP
|
||||||
|
model = GeminiDDP(model, device=get_current_device(), placement_policy='auto', pin_memory=True)
|
||||||
|
|
||||||
|
pytorch_model = convert_to_torch_module(model)
|
||||||
|
|
||||||
|
for n, p in pytorch_model.named_parameters():
|
||||||
|
assert not isinstance(p, ColoTensor)
|
||||||
|
|
||||||
|
|
||||||
|
def run_dist(rank, world_size, port):
|
||||||
|
config = {}
|
||||||
|
colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||||
|
run_convert_torch_module()
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.dist
|
||||||
|
@pytest.mark.parametrize('world_size', [1, 4])
|
||||||
|
@rerun_if_address_is_in_use()
|
||||||
|
def test_convert_torch_module(world_size):
|
||||||
|
run_func = partial(run_dist, world_size=world_size, port=free_port())
|
||||||
|
mp.spawn(run_func, nprocs=world_size)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
test_convert_torch_module(2)
|
Loading…
Reference in New Issue