mirror of https://github.com/hpcaitech/ColossalAI
[Tensor] overriding paramters() for Module using ColoTensor (#889)
parent
daf59ff72e
commit
26c49639d8
|
@ -165,7 +165,12 @@ class ColoTensor(object):
|
|||
self._torch_tensor.backward(gradient=gradient, retain_graph=retain_graph)
|
||||
|
||||
def __add__(self, o) -> "ColoTensor":
|
||||
return ColoTensor.init_from_torch_tensor(self.torch_tensor() + o.torch_tensor())
|
||||
if isinstance(o, ColoTensor):
|
||||
return ColoTensor.init_from_torch_tensor(self.torch_tensor() + o.torch_tensor())
|
||||
elif isinstance(o, torch.Tensor):
|
||||
return ColoTensor.init_from_torch_tensor(self.torch_tensor() + o)
|
||||
else:
|
||||
raise TypeError(f'{type(o)} is not supported in ColoTensor __add__')
|
||||
|
||||
def __truediv__(self, o) -> "ColoTensor":
|
||||
return ColoTensor.init_from_torch_tensor(self.torch_tensor() / o)
|
||||
|
|
|
@ -1,10 +1,68 @@
|
|||
from colossalai.utils.cuda import get_current_device
|
||||
from .utils import InsertPostInitMethodToModuleSubClasses
|
||||
import torch
|
||||
# from colossalai.logging import get_dist_logger
|
||||
from colossalai.tensor import ColoTensor
|
||||
import types
|
||||
|
||||
# _orig_torch_empty = torch.empty
|
||||
from torch import nn
|
||||
from typing import Iterator, Tuple, Union
|
||||
|
||||
|
||||
def ColoModulize(module):
|
||||
"""
|
||||
Replacing the parameters() and named_parameters() with our customized ones
|
||||
"""
|
||||
|
||||
def named_params_with_colotensor(
|
||||
module: nn.Module,
|
||||
prefix: str = '',
|
||||
recurse: bool = True,
|
||||
) -> Iterator[Tuple[str, Union[nn.Parameter, ColoTensor]]]:
|
||||
modules = module.named_modules(prefix=prefix) if recurse else [(prefix, module)]
|
||||
|
||||
memo = set()
|
||||
for mod_prefix, mod in modules:
|
||||
# find all colotensors tensor params
|
||||
for name, val in vars(mod).items():
|
||||
if isinstance(val, ColoTensor) and val not in memo:
|
||||
memo.add(val)
|
||||
name = mod_prefix + ('.' if mod_prefix else '') + name
|
||||
yield name, val
|
||||
|
||||
# find all nn.Parameters
|
||||
for name, val in module.old_named_parameters(recurse=recurse):
|
||||
yield name, val
|
||||
|
||||
def fake_parameters(self, *args, **kargs):
|
||||
for name, p in named_params_with_colotensor(self, *args, **kargs):
|
||||
if isinstance(p, ColoTensor):
|
||||
yield p.torch_tensor()
|
||||
elif isinstance(p, torch.Tensor):
|
||||
yield p
|
||||
|
||||
def fake_named_parameters(self, *args, **kargs):
|
||||
for name, p in named_params_with_colotensor(self, *args, **kargs):
|
||||
if isinstance(p, ColoTensor):
|
||||
yield name, p.torch_tensor()
|
||||
elif isinstance(p, torch.Tensor):
|
||||
yield name, p
|
||||
|
||||
def colo_parameters(self, *args, **kargs):
|
||||
for _, p in named_params_with_colotensor(self, *args, **kargs):
|
||||
yield p
|
||||
|
||||
def colo_named_parameters(self, *args, **kargs):
|
||||
for name, p in named_params_with_colotensor(self, *args, **kargs):
|
||||
yield name, p
|
||||
|
||||
module.old_named_parameters = module.named_parameters
|
||||
module.old_parameters = module.parameters
|
||||
|
||||
funcType = types.MethodType
|
||||
module.parameters = funcType(fake_parameters, module)
|
||||
module.named_parameters = funcType(fake_named_parameters, module)
|
||||
module.colo_parameters = funcType(colo_parameters, module)
|
||||
module.colo_named_parameters = funcType(colo_named_parameters, module)
|
||||
module._colo_visited = True
|
||||
|
||||
|
||||
class ColoInitContext(InsertPostInitMethodToModuleSubClasses):
|
||||
|
@ -24,8 +82,11 @@ class ColoInitContext(InsertPostInitMethodToModuleSubClasses):
|
|||
The function to call at the end of the constructor of each module.
|
||||
FIXME(fjr) The module may be passed to this function multiple times?
|
||||
"""
|
||||
if hasattr(module, '_colo_visited'):
|
||||
return
|
||||
|
||||
name_list = []
|
||||
for name, param in module.named_parameters():
|
||||
for name, param in module.named_parameters(recurse=False):
|
||||
if isinstance(param, ColoTensor):
|
||||
continue
|
||||
name_list.append((name, param))
|
||||
|
@ -35,3 +96,5 @@ class ColoInitContext(InsertPostInitMethodToModuleSubClasses):
|
|||
delattr(module, name)
|
||||
setattr(module, name,
|
||||
ColoTensor.init_from_torch_tensor(tensor=param.to(self._device), save_payload=save_torch_payload))
|
||||
|
||||
ColoModulize(module)
|
||||
|
|
|
@ -48,7 +48,7 @@ def run_1d_row_tp():
|
|||
model_torch = model_torch.cuda()
|
||||
|
||||
# A naive way to set spec for all weights in Linear
|
||||
for name, p in named_params_with_colotensor(model):
|
||||
for name, p in model.colo_named_parameters():
|
||||
if not isinstance(p, ColoTensor):
|
||||
continue
|
||||
if 'weight' in name and 'LayerNorm' not in name and 'ln' not in name and 'embed' not in name:
|
||||
|
|
Loading…
Reference in New Issue