|
|
|
@ -82,16 +82,26 @@ class ColoParamOpHookManager:
|
|
|
|
|
@staticmethod
|
|
|
|
|
def pre_op(params: List[torch.Tensor], *args: Any) -> list:
|
|
|
|
|
ColoParamOpHookManager._trigger_pre_forward(params)
|
|
|
|
|
args_info = _get_colo_tensors_info(*args)
|
|
|
|
|
rets = PreFwdPostBwd.apply(params, *args)
|
|
|
|
|
return _update_colo_tensors(args_info, *rets)
|
|
|
|
|
grad_args, rear_args = _get_grad_args(*args)
|
|
|
|
|
colo_info = _get_colo_tensors_info(*grad_args)
|
|
|
|
|
rets = PreFwdPostBwd.apply(params, *grad_args)
|
|
|
|
|
update_args = _update_colo_tensors(colo_info, *rets)
|
|
|
|
|
if rear_args is None:
|
|
|
|
|
return update_args
|
|
|
|
|
else:
|
|
|
|
|
arg_zero = (tuple(update_args),)
|
|
|
|
|
return arg_zero + rear_args
|
|
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
|
def post_op(params: List[torch.Tensor], arg: Any) -> Any:
|
|
|
|
|
ColoParamOpHookManager._trigger_post_forward(params)
|
|
|
|
|
arg_info = _get_colo_tensors_info(arg)
|
|
|
|
|
colo_info = _get_colo_tensors_info(arg)
|
|
|
|
|
ret = PostFwdPreBwd.apply(params, arg)
|
|
|
|
|
return _unpack_args(_update_colo_tensors(arg_info, ret))
|
|
|
|
|
res = _update_colo_tensors(colo_info, ret)
|
|
|
|
|
if len(res) == 1:
|
|
|
|
|
return res[0]
|
|
|
|
|
else:
|
|
|
|
|
return res
|
|
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
|
def has_hook() -> bool:
|
|
|
|
@ -103,7 +113,7 @@ class PreFwdPostBwd(torch.autograd.Function):
|
|
|
|
|
@staticmethod
|
|
|
|
|
def forward(ctx, params, *args):
|
|
|
|
|
ctx.params = params
|
|
|
|
|
return _unpack_args(args)
|
|
|
|
|
return args
|
|
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
|
def backward(ctx, *grads):
|
|
|
|
@ -124,10 +134,29 @@ class PostFwdPreBwd(torch.autograd.Function):
|
|
|
|
|
return (None,) + grads
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _unpack_args(args):
|
|
|
|
|
if len(args) == 1:
|
|
|
|
|
return args[0]
|
|
|
|
|
return args
|
|
|
|
|
def _is_grad_tensor(obj) -> bool:
|
|
|
|
|
if torch.is_tensor(obj):
|
|
|
|
|
if obj.grad_fn is not None or obj.requires_grad:
|
|
|
|
|
return True
|
|
|
|
|
return False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _get_grad_args(*args):
|
|
|
|
|
# returns the identical args if there is a grad tensor
|
|
|
|
|
for obj in args:
|
|
|
|
|
if _is_grad_tensor(obj):
|
|
|
|
|
return args, None
|
|
|
|
|
# otherwise, the first arguement should be a tuple of grad tensors
|
|
|
|
|
# if there is no grad tensor, the backward of PreFwdPostBwd can't be triggered
|
|
|
|
|
arg_zero = args[0]
|
|
|
|
|
if not isinstance(arg_zero, tuple):
|
|
|
|
|
raise NotImplementedError("Some torch function is incompatible because of its complcated inputs.")
|
|
|
|
|
check_grad_flag = False
|
|
|
|
|
for obj in arg_zero:
|
|
|
|
|
check_grad_flag |= _is_grad_tensor(obj)
|
|
|
|
|
if not check_grad_flag:
|
|
|
|
|
raise NotImplementedError("Some torch function is incompatible because of its complcated inputs.")
|
|
|
|
|
return arg_zero, args[1:]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _get_colo_tensors_info(*args) -> list:
|
|
|
|
|