[chatgpt]update ci (#3087)

* [chatgpt]update ci

* Update test_ci.sh

* Update test_ci.sh

* Update test_ci.sh

* test

* Update train_prompts.py

* Update train_dummy.py

* add save_path

* polish

* add save path

* polish

* add save path

* polish

* delete bloom-560m test

delete bloom-560m test because of oom

* add ddp test
pull/3131/head
BlueRum 2023-03-14 11:01:17 +08:00 committed by GitHub
parent 169ed4d24e
commit 23cd5e2ccf
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 56 additions and 8 deletions

View File

@ -15,11 +15,57 @@ export OMP_NUM_THREADS=8
pip install -r ${BASE}/requirements.txt
# train dummy
for strategy in ddp colossalai_gemini colossalai_zero2; do
torchrun --standalone --nproc_per_node=2 ${BASE}/train_dummy.py --strategy ${strategy} --num_episodes 2 --max_timesteps 3 --update_timesteps 3 --max_epochs 3 --experience_batch_size 4 --train_batch_size 4
done
python ${BASE}/train_dummy.py --strategy naive --num_episodes 1 \
--max_timesteps 2 --update_timesteps 2 \
--max_epochs 1 --train_batch_size 2 --lora_rank 4
torchrun --standalone --nproc_per_node=2 ${BASE}/train_dummy.py \
--strategy colossalai_gemini --num_episodes 1 --max_timesteps 2 \
--update_timesteps 2 --max_epochs 1 --train_batch_size 2\
--pretrain 'facebook/opt-350m' --model opt --lora_rank 4\
--save_path ${BASE}/actor_checkpoint_dummy.pt
python ${BASE}/inference.py --model_path ${BASE}/actor_checkpoint_dummy.pt --pretrain 'facebook/opt-350m' --model opt
torchrun --standalone --nproc_per_node=2 ${BASE}/train_dummy.py \
--strategy ddp --num_episodes 1 --max_timesteps 2 \
--update_timesteps 2 --max_epochs 1 --train_batch_size 2\
--pretrain 'facebook/opt-350m' --model opt --lora_rank 4\
--save_path ${BASE}/actor_checkpoint_dummy.pt
python ${BASE}/inference.py --model_path ${BASE}/actor_checkpoint_dummy.pt --pretrain 'facebook/opt-350m' --model opt
torchrun --standalone --nproc_per_node=2 ${BASE}/train_dummy.py \
--strategy colossalai_zero2 --num_episodes 1 --max_timesteps 2 \
--update_timesteps 2 --max_epochs 1 --train_batch_size 2\
--pretrain 'gpt2' --model gpt2 --lora_rank 4\
--save_path ${BASE}/actor_checkpoint_dummy.pt
python ${BASE}/inference.py --model_path ${BASE}/actor_checkpoint_dummy.pt --pretrain 'gpt2' --model gpt2
rm -rf ${BASE}/actor_checkpoint_dummy.pt
# train prompts
for strategy in ddp colossalai_gemini colossalai_zero2; do
torchrun --standalone --nproc_per_node=2 ${BASE}/train_prompts.py $PROMPT_PATH --strategy ${strategy} --num_episodes 2 --max_timesteps 3 --update_timesteps 3 --max_epochs 3
done
python ${BASE}/train_prompts.py $PROMPT_PATH --strategy naive --num_episodes 1 \
--max_timesteps 2 --update_timesteps 2 \
--max_epochs 1 --train_batch_size 2 --lora_rank 4
torchrun --standalone --nproc_per_node=2 ${BASE}/train_prompts.py $PROMPT_PATH \
--strategy colossalai_zero2 --num_episodes 1 --max_timesteps 2 \
--update_timesteps 2 --max_epochs 1 --train_batch_size 2\
--pretrain 'facebook/opt-350m' --model opt --lora_rank 4\
--save_path ${BASE}/actor_checkpoint_prompts.pt
python ${BASE}/inference.py --model_path ${BASE}/actor_checkpoint_prompts.pt --pretrain 'facebook/opt-350m' --model opt
torchrun --standalone --nproc_per_node=2 ${BASE}/train_prompts.py $PROMPT_PATH \
--strategy ddp --num_episodes 1 --max_timesteps 2 \
--update_timesteps 2 --max_epochs 1 --train_batch_size 2\
--pretrain 'gpt2' --model gpt2 --lora_rank 4\
--save_path ${BASE}/actor_checkpoint_prompts.pt
python ${BASE}/inference.py --model_path ${BASE}/actor_checkpoint_prompts.pt --pretrain 'gpt2' --model gpt2
torchrun --standalone --nproc_per_node=2 ${BASE}/train_prompts.py $PROMPT_PATH \
--strategy colossalai_gemini --num_episodes 1 --max_timesteps 2 \
--update_timesteps 2 --max_epochs 1 --train_batch_size 2\
--pretrain 'gpt2' --model gpt2 --lora_rank 4\
--save_path ${BASE}/actor_checkpoint_prompts.pt
python ${BASE}/inference.py --model_path ${BASE}/actor_checkpoint_prompts.pt --pretrain 'gpt2' --model gpt2
rm -rf ${BASE}/actor_checkpoint_prompts.pt

View File

@ -115,7 +115,7 @@ def main(args):
update_timesteps=args.update_timesteps)
# save model checkpoint after fitting
strategy.save_model(actor, 'actor_checkpoint_dummy.pt', only_rank0=True)
strategy.save_model(actor, args.save_path, only_rank0=True)
# save optimizer checkpoint on all ranks
if args.need_optim_ckpt:
strategy.save_optimizer(actor_optim,
@ -130,6 +130,7 @@ if __name__ == '__main__':
default='naive')
parser.add_argument('--model', type=str, default='gpt2', choices=['gpt2', 'bloom', 'opt'])
parser.add_argument('--pretrain', type=str, default=None)
parser.add_argument('--save_path', type=str, default='actor_checkpoint_dummy.pt')
parser.add_argument('--need_optim_ckpt', type=bool, default=False)
parser.add_argument('--num_episodes', type=int, default=50)
parser.add_argument('--max_timesteps', type=int, default=10)

View File

@ -102,7 +102,7 @@ def main(args):
max_timesteps=args.max_timesteps,
update_timesteps=args.update_timesteps)
# save model checkpoint after fitting
strategy.save_model(actor, 'actor_checkpoint_prompts.pt', only_rank0=True)
strategy.save_model(actor, args.save_path, only_rank0=True)
# save optimizer checkpoint on all ranks
if args.need_optim_ckpt:
strategy.save_optimizer(actor_optim,
@ -118,6 +118,7 @@ if __name__ == '__main__':
default='naive')
parser.add_argument('--model', default='gpt2', choices=['gpt2', 'bloom', 'opt'])
parser.add_argument('--pretrain', type=str, default=None)
parser.add_argument('--save_path', type=str, default='actor_checkpoint_prompts.pt')
parser.add_argument('--need_optim_ckpt', type=bool, default=False)
parser.add_argument('--num_episodes', type=int, default=10)
parser.add_argument('--max_timesteps', type=int, default=10)