From 21e29e22122851a1869675523ab2c94ddd0bdf58 Mon Sep 17 00:00:00 2001 From: Hongxin Liu Date: Fri, 19 May 2023 12:12:42 +0800 Subject: [PATCH] [doc] add tutorial for booster plugins (#3758) * [doc] add en booster plugins doc * [doc] add booster plugins doc in sidebar * [doc] add zh booster plugins doc * [doc] fix zh booster plugin translation * [doc] reoganize tutorials order of basic section * [devops] force sync to test ci --- docs/sidebars.json | 7 +- docs/source/en/basics/booster_plugins.md | 64 +++++++++++++++++++ docs/source/zh-Hans/basics/booster_plugins.md | 64 +++++++++++++++++++ 3 files changed, 132 insertions(+), 3 deletions(-) create mode 100644 docs/source/en/basics/booster_plugins.md create mode 100644 docs/source/zh-Hans/basics/booster_plugins.md diff --git a/docs/sidebars.json b/docs/sidebars.json index dd3a4e5ec..ed0ba5278 100644 --- a/docs/sidebars.json +++ b/docs/sidebars.json @@ -26,14 +26,15 @@ "collapsed": true, "items": [ "basics/command_line_tool", - "basics/define_your_config", "basics/launch_colossalai", + "basics/booster_api", + "basics/booster_plugins", + "basics/define_your_config", "basics/initialize_features", "basics/engine_trainer", "basics/configure_parallelization", "basics/model_checkpoint", - "basics/colotensor_concept", - "basics/booster_api" + "basics/colotensor_concept" ] }, { diff --git a/docs/source/en/basics/booster_plugins.md b/docs/source/en/basics/booster_plugins.md new file mode 100644 index 000000000..c15c30c84 --- /dev/null +++ b/docs/source/en/basics/booster_plugins.md @@ -0,0 +1,64 @@ +# Booster Plugins + +Author: [Hongxin Liu](https://github.com/ver217) + +**Prerequisite:** +- [Booster API](./booster_api.md) + +## Introduction + +As mentioned in [Booster API](./booster_api.md), we can use booster plugins to customize the parallel training. In this tutorial, we will introduce how to use booster plugins. + +We currently provide the following plugins: + +- [Low Level Zero Plugin](#low-level-zero-plugin): It wraps the `colossalai.zero.low_level.LowLevelZeroOptimizer` and can be used to train models with zero-dp. It only supports zero stage-1 and stage-2. +- [Gemini Plugin](#gemini-plugin): It wraps the [Gemini](../features/zero_with_chunk.md) which implements Zero-3 with chunk-based and heterogeneous memory management. +- [Torch DDP Plugin](#torch-ddp-plugin): It is a wrapper of `torch.nn.parallel.DistributedDataParallel` and can be used to train models with data parallelism. +- [Torch FSDP Plugin](#torch-fsdp-plugin): It is a wrapper of `torch.distributed.fsdp.FullyShardedDataParallel` and can be used to train models with zero-dp. + +More plugins are coming soon. + +## Plugins + +### Low Level Zero Plugin + +This plugin implements Zero-1 and Zero-2 (w/wo CPU offload), using `reduce` and `gather` to synchronize gradients and weights. + +Zero-1 can be regarded as a better substitute of Torch DDP, which is more memory efficient and faster. It can be easily used in hybrid parallelism. + +Zero-2 does not support local gradient accumulation. Though you can accumulate gradient if you insist, it cannot reduce communication cost. That is to say, it's not a good idea to use Zero-2 with pipeline parallelism. + +{{ autodoc:colossalai.booster.plugin.LowLevelZeroPlugin }} + +We've tested compatibility on some famous models, following models may not be supported: + +- `timm.models.convit_base` +- dlrm and deepfm models in `torchrec` +- `diffusers.VQModel` +- `transformers.AlbertModel` +- `transformers.AlbertForPreTraining` +- `transformers.BertModel` +- `transformers.BertForPreTraining` +- `transformers.GPT2DoubleHeadsModel` + +Compatibility problems will be fixed in the future. + +### Gemini Plugin + +This plugin implements Zero-3 with chunk-based and heterogeneous memory management. It can train large models without much loss in speed. It also does not support local gradient accumulation. More details can be found in [Gemini Doc](../features/zero_with_chunk.md). + +{{ autodoc:colossalai.booster.plugin.GeminiPlugin }} + +### Torch DDP Plugin + +More details can be found in [Pytorch Docs](https://pytorch.org/docs/main/generated/torch.nn.parallel.DistributedDataParallel.html#torch.nn.parallel.DistributedDataParallel). + +{{ autodoc:colossalai.booster.plugin.TorchDDPPlugin }} + +### Torch FSDP Plugin + +> ⚠ This plugin is not available when torch version is lower than 1.12.0. + +More details can be found in [Pytorch Docs](https://pytorch.org/docs/main/fsdp.html). + +{{ autodoc:colossalai.booster.plugin.TorchFSDPPlugin }} diff --git a/docs/source/zh-Hans/basics/booster_plugins.md b/docs/source/zh-Hans/basics/booster_plugins.md new file mode 100644 index 000000000..e0258eb37 --- /dev/null +++ b/docs/source/zh-Hans/basics/booster_plugins.md @@ -0,0 +1,64 @@ +# Booster 插件 + +作者: [Hongxin Liu](https://github.com/ver217) + +**前置教程:** +- [Booster API](./booster_api.md) + +## 引言 + +正如 [Booster API](./booster_api.md) 中提到的,我们可以使用 booster 插件来自定义并行训练。在本教程中,我们将介绍如何使用 booster 插件。 + +我们现在提供以下插件: + +- [Low Level Zero 插件](#low-level-zero-plugin): 它包装了 `colossalai.zero.low_level.LowLevelZeroOptimizer`,可用于使用 Zero-dp 训练模型。它仅支持 Zero 阶段1和阶段2。 +- [Gemini 插件](#gemini-plugin): 它包装了 [Gemini](../features/zero_with_chunk.md),Gemini 实现了基于Chunk内存管理和异构内存管理的 Zero-3。 +- [Torch DDP 插件](#torch-ddp-plugin): 它包装了 `torch.nn.parallel.DistributedDataParallel` 并且可用于使用数据并行训练模型。 +- [Torch FSDP 插件](#torch-fsdp-plugin): 它包装了 `torch.distributed.fsdp.FullyShardedDataParallel` 并且可用于使用 Zero-dp 训练模型。 + +更多插件即将推出。 + +## 插件 + +### Low Level Zero 插件 + +该插件实现了 Zero-1 和 Zero-2(使用/不使用 CPU 卸载),使用`reduce`和`gather`来同步梯度和权重。 + +Zero-1 可以看作是 Torch DDP 更好的替代品,内存效率更高,速度更快。它可以很容易地用于混合并行。 + +Zero-2 不支持局部梯度累积。如果您坚持使用,虽然可以积累梯度,但不能降低通信成本。也就是说,同时使用流水线并行和 Zero-2 并不是一个好主意。 + +{{ autodoc:colossalai.booster.plugin.LowLevelZeroPlugin }} + +我们已经测试了一些主流模型的兼容性,可能不支持以下模型: + +- `timm.models.convit_base` +- dlrm and deepfm models in `torchrec` +- `diffusers.VQModel` +- `transformers.AlbertModel` +- `transformers.AlbertForPreTraining` +- `transformers.BertModel` +- `transformers.BertForPreTraining` +- `transformers.GPT2DoubleHeadsModel` + +兼容性问题将在未来修复。 + +### Gemini 插件 + +这个插件实现了基于Chunk内存管理和异构内存管理的 Zero-3。它可以训练大型模型而不会损失太多速度。它也不支持局部梯度累积。更多详细信息,请参阅 [Gemini 文档](../features/zero_with_chunk.md). + +{{ autodoc:colossalai.booster.plugin.GeminiPlugin }} + +### Torch DDP 插件 + +更多详细信息,请参阅 [Pytorch 文档](https://pytorch.org/docs/main/generated/torch.nn.parallel.DistributedDataParallel.html#torch.nn.parallel.DistributedDataParallel). + +{{ autodoc:colossalai.booster.plugin.TorchDDPPlugin }} + +### Torch FSDP 插件 + +> ⚠ 如果 torch 版本低于 1.12.0,此插件将不可用。 + +更多详细信息,请参阅 [Pytorch 文档](https://pytorch.org/docs/main/fsdp.html). + +{{ autodoc:colossalai.booster.plugin.TorchFSDPPlugin }}