mirror of https://github.com/hpcaitech/ColossalAI
Merge pull request #5435 from Courtesy-Xs/add_gpu_launch_config
Add query and other componentspull/5445/head
commit
21e1e3645c
|
@ -0,0 +1,20 @@
|
|||
#pragma once
|
||||
|
||||
#include <memory>
|
||||
|
||||
#include "common/nvgpu_dev_info.h"
|
||||
#include "target.h"
|
||||
|
||||
namespace colossalAI {
|
||||
namespace common {
|
||||
|
||||
template <typename Ret>
|
||||
class DevInfoMgr final {
|
||||
public:
|
||||
static std::unique_ptr<Ret> GetDevInfo(int device_num) const {
|
||||
return std::make_unique<Ret>(device_num);
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace common
|
||||
} // namespace colossalAI
|
|
@ -9,7 +9,15 @@
|
|||
|
||||
#include <ATen/ATen.h>
|
||||
|
||||
#include "compat.h"
|
||||
#ifndef TORCH_CHECK
|
||||
#define TORCH_CHECK AT_CHECK
|
||||
#endif
|
||||
|
||||
#ifdef VERSION_GE_1_3
|
||||
#define DATA_PTR data_ptr
|
||||
#else
|
||||
#define DATA_PTR data
|
||||
#endif
|
||||
|
||||
#define DISPATCH_HALF_AND_BFLOAT(TYPE, NAME, ...) \
|
||||
switch (TYPE) { \
|
||||
|
@ -214,90 +222,3 @@
|
|||
AT_ERROR(#NAME, "not implemented for '", toString(GTYPE), toString(PTYPE), \
|
||||
"'"); \
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
__device__ __forceinline__ T reduce_block_into_lanes(
|
||||
T *x, T val, int lanes = 1,
|
||||
bool share_result = false) // lanes is intended to be <= 32.
|
||||
{
|
||||
int tid = threadIdx.x + threadIdx.y * blockDim.x;
|
||||
int blockSize =
|
||||
blockDim.x * blockDim.y; // blockSize is intended to be a multiple of 32.
|
||||
|
||||
if (blockSize >= 64) {
|
||||
x[tid] = val;
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int i = (blockSize >> 1); i >= 64; i >>= 1) {
|
||||
if (tid < i) x[tid] = x[tid] + x[tid + i];
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
T final;
|
||||
|
||||
if (tid < 32) {
|
||||
if (blockSize >= 64)
|
||||
final = x[tid] + x[tid + 32];
|
||||
else
|
||||
final = val;
|
||||
// __SYNCWARP();
|
||||
|
||||
#pragma unroll
|
||||
for (int i = 16; i >= lanes; i >>= 1)
|
||||
final = final + __shfl_down_sync(0xffffffff, final, i);
|
||||
}
|
||||
|
||||
if (share_result) {
|
||||
if (tid < lanes) x[tid] = final; // EpilogueOp
|
||||
// Make sure the smem result is visible to all warps.
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
return final;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
__device__ __forceinline__ T reduce_block_into_lanes_max_op(
|
||||
T *x, T val, int lanes = 1,
|
||||
bool share_result = false) // lanes is intended to be <= 32.
|
||||
{
|
||||
int tid = threadIdx.x + threadIdx.y * blockDim.x;
|
||||
int blockSize =
|
||||
blockDim.x * blockDim.y; // blockSize is intended to be a multiple of 32.
|
||||
|
||||
if (blockSize >= 64) {
|
||||
x[tid] = val;
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int i = (blockSize >> 1); i >= 64; i >>= 1) {
|
||||
if (tid < i) x[tid] = fmaxf(fabsf(x[tid]), fabsf(x[tid + i]));
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
T final;
|
||||
|
||||
if (tid < 32) {
|
||||
if (blockSize >= 64)
|
||||
final = fmaxf(fabsf(x[tid]), fabsf(x[tid + 32]));
|
||||
else
|
||||
final = val;
|
||||
// __SYNCWARP();
|
||||
|
||||
#pragma unroll
|
||||
for (int i = 16; i >= lanes; i >>= 1)
|
||||
final =
|
||||
fmaxf(fabsf(final), fabsf(__shfl_down_sync(0xffffffff, final, i)));
|
||||
}
|
||||
|
||||
if (share_result) {
|
||||
if (tid < lanes) x[tid] = final; // EpilogueOp
|
||||
// Make sure the smem result is visible to all warps.
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
return final;
|
||||
}
|
|
@ -2,10 +2,10 @@
|
|||
|
||||
#include <ATen/ATen.h>
|
||||
|
||||
#include "../type_shim.h"
|
||||
#include "micros.h"
|
||||
|
||||
namespace infer {
|
||||
namespace dtype {
|
||||
namespace colossalAI {
|
||||
namespace common {
|
||||
|
||||
template <typename T>
|
||||
class MPTypeTrait {
|
||||
|
@ -31,5 +31,5 @@ class MPTypeTrait<at::BFloat16> {
|
|||
using Type = float;
|
||||
};
|
||||
|
||||
} // namespace dtype
|
||||
} // namespace infer
|
||||
} // namespace common
|
||||
} // namespace colossalAI
|
|
@ -0,0 +1,134 @@
|
|||
#pragma once
|
||||
|
||||
#include <exception>
|
||||
#include <iostream>
|
||||
#include <string>
|
||||
|
||||
namespace colossalAI {
|
||||
namespace common {
|
||||
|
||||
class Target {
|
||||
public:
|
||||
enum class OS : int {
|
||||
Unk = -1,
|
||||
Linux,
|
||||
Windows,
|
||||
};
|
||||
enum class Arch : int {
|
||||
Unk = -1,
|
||||
X86,
|
||||
Arm,
|
||||
NVGPU,
|
||||
AMDGPU,
|
||||
Ascend,
|
||||
};
|
||||
enum class BitLen : int {
|
||||
Unk = -1,
|
||||
k32,
|
||||
k64,
|
||||
};
|
||||
|
||||
explicit Target(OS os, Arch arch, BitLen bitlen)
|
||||
: os_(os), arch_(arch), bitlen_(bitlen) {}
|
||||
|
||||
bool defined() const {
|
||||
return (os_ != OS::Unk) && (arch_ != Arch::Unk) && (bitlen_ != BitLen::Unk);
|
||||
}
|
||||
|
||||
std::string str() const {
|
||||
std::string s{"OS: "};
|
||||
switch (os_) {
|
||||
case OS::Unk:
|
||||
s += "Unk";
|
||||
break;
|
||||
case OS::Linux:
|
||||
s += "Linux";
|
||||
break;
|
||||
case OS::Windows:
|
||||
s += "Windows";
|
||||
break;
|
||||
default:
|
||||
throw std::invalid_argument("Invalid OS type!");
|
||||
}
|
||||
s += "\t";
|
||||
s += "Arch: ";
|
||||
|
||||
switch (arch_) {
|
||||
case Arch::Unk:
|
||||
s += "Unk";
|
||||
break;
|
||||
case Arch::X86:
|
||||
s += "X86";
|
||||
break;
|
||||
case Arch::Arm:
|
||||
s += "Arm";
|
||||
break;
|
||||
case Arch::NVGPU:
|
||||
s += "NVGPU";
|
||||
break;
|
||||
case Arch::AMDGPU:
|
||||
s += "AMDGPU";
|
||||
break;
|
||||
case Arch::Ascend:
|
||||
s += "Ascend";
|
||||
break;
|
||||
default:
|
||||
throw std::invalid_argument("Invalid Arch type!");
|
||||
}
|
||||
s += "\t";
|
||||
s += "BitLen: ";
|
||||
|
||||
switch (bitlen_) {
|
||||
case BitLen::Unk:
|
||||
s += "Unk";
|
||||
break;
|
||||
case BitLen::k32:
|
||||
s += "k32";
|
||||
break;
|
||||
case BitLen::k64:
|
||||
s += "k64";
|
||||
break;
|
||||
default:
|
||||
throw std::invalid_argument("Invalid target bit length!");
|
||||
}
|
||||
|
||||
return s;
|
||||
}
|
||||
|
||||
OS os() const { return os_; }
|
||||
Arch arch() const { return arch_; }
|
||||
BitLen bitlen() const { return bitlen_; }
|
||||
|
||||
static Target DefaultX86Target();
|
||||
static Target DefaultArmTarget();
|
||||
static Target DefaultRocmTarget();
|
||||
static Target DefaultAscendTarget();
|
||||
|
||||
static Target DefaultCUDATarget() {
|
||||
return Target(OS::Linux, Arch::CUDA, BitLen::k64);
|
||||
}
|
||||
|
||||
friend std::ostream& operator<<(std::ostream& os, const Target& target);
|
||||
friend bool operator==(const Target& lhs, const Target& rhs);
|
||||
friend bool operator!=(const Target& lhs, const Target& rhs);
|
||||
|
||||
private:
|
||||
OS os_{OS::Unk};
|
||||
Arch arch_{Arch::Unk};
|
||||
BitLen bitlen_{BitLen::Unk};
|
||||
};
|
||||
|
||||
std::ostream& operator<<(std::ostream& os, const Target& target) {
|
||||
std::cout << target.str() << std::endl;
|
||||
}
|
||||
bool operator==(const Target& lhs, const Target& rhs) {
|
||||
return (lhs.os_ == rhs.os_) && (lhs.arch_ == rhs.arch_) &&
|
||||
(lhs.bitlen_ == rhs.bitlen_);
|
||||
}
|
||||
bool operator!=(const Target& lhs, const Target& rhs) {
|
||||
return (lhs.os_ != rhs.os_) && (lhs.arch_ != rhs.arch_) &&
|
||||
(lhs.bitlen_ != rhs.bitlen_);
|
||||
}
|
||||
|
||||
} // namespace common
|
||||
} // namespace colossalAI
|
|
@ -2,13 +2,13 @@
|
|||
#include <torch/extension.h>
|
||||
#include <stdio.h>
|
||||
|
||||
#include "type_shim.h"
|
||||
#include "include/mp_type_traits.h"
|
||||
#include "../common/micros.h"
|
||||
#include "../common/mp_type_traits.h"
|
||||
|
||||
template<typename T>
|
||||
__device__ __forceinline__ T silu_kernel(const T& x) {
|
||||
// x * sigmoid(x)
|
||||
using MT = typename infer::dtype::MPTypeTrait<T>::Type;
|
||||
using MT = typename colossalAI::common::MPTypeTrait<T>::Type;
|
||||
return static_cast<T>((static_cast<MT>(x)) / (static_cast<MT>(1.0f) + expf(static_cast<MT>(-x))));
|
||||
}
|
||||
|
||||
|
@ -17,7 +17,7 @@ __global__ void act_and_mul_kernel(
|
|||
const scalar_t* __restrict__ ins_data,
|
||||
scalar_t* __restrict__ outs_data,
|
||||
const int64_t numel) {
|
||||
using MT = typename infer::dtype::MPTypeTrait<scalar_t>::Type;
|
||||
using MT = typename colossalAI::common::MPTypeTrait<scalar_t>::Type;
|
||||
|
||||
int64_t idx = static_cast<int64_t>(threadIdx.x) + static_cast<int64_t>(blockIdx.x) * static_cast<int64_t>(blockDim.x);
|
||||
const int64_t grid_size = blockDim.x * gridDim.x;
|
||||
|
|
|
@ -1,10 +0,0 @@
|
|||
// modified from https://github.com/NVIDIA/apex/blob/master/csrc/compat.h
|
||||
#ifndef TORCH_CHECK
|
||||
#define TORCH_CHECK AT_CHECK
|
||||
#endif
|
||||
|
||||
#ifdef VERSION_GE_1_3
|
||||
#define DATA_PTR data_ptr
|
||||
#else
|
||||
#define DATA_PTR data
|
||||
#endif
|
|
@ -2,7 +2,7 @@
|
|||
#include <torch/extension.h>
|
||||
#include <stdio.h>
|
||||
|
||||
#include "type_shim.h"
|
||||
#include "../common/micros.h"
|
||||
|
||||
template<typename scalar_t>
|
||||
__global__ void decode_kv_cache_memcpy_kernel(
|
||||
|
|
|
@ -310,3 +310,90 @@ __inline__ __device__ void blockReduce<ReduceType::kMax, 4>(float *pval) {
|
|||
}
|
||||
warpReduce<ReduceType::kMax, num>(pval);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
__device__ __forceinline__ T reduce_block_into_lanes(
|
||||
T *x, T val, int lanes = 1,
|
||||
bool share_result = false) // lanes is intended to be <= 32.
|
||||
{
|
||||
int tid = threadIdx.x + threadIdx.y * blockDim.x;
|
||||
int blockSize =
|
||||
blockDim.x * blockDim.y; // blockSize is intended to be a multiple of 32.
|
||||
|
||||
if (blockSize >= 64) {
|
||||
x[tid] = val;
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int i = (blockSize >> 1); i >= 64; i >>= 1) {
|
||||
if (tid < i) x[tid] = x[tid] + x[tid + i];
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
T final;
|
||||
|
||||
if (tid < 32) {
|
||||
if (blockSize >= 64)
|
||||
final = x[tid] + x[tid + 32];
|
||||
else
|
||||
final = val;
|
||||
// __SYNCWARP();
|
||||
|
||||
#pragma unroll
|
||||
for (int i = 16; i >= lanes; i >>= 1)
|
||||
final = final + __shfl_down_sync(0xffffffff, final, i);
|
||||
}
|
||||
|
||||
if (share_result) {
|
||||
if (tid < lanes) x[tid] = final; // EpilogueOp
|
||||
// Make sure the smem result is visible to all warps.
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
return final;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
__device__ __forceinline__ T reduce_block_into_lanes_max_op(
|
||||
T *x, T val, int lanes = 1,
|
||||
bool share_result = false) // lanes is intended to be <= 32.
|
||||
{
|
||||
int tid = threadIdx.x + threadIdx.y * blockDim.x;
|
||||
int blockSize =
|
||||
blockDim.x * blockDim.y; // blockSize is intended to be a multiple of 32.
|
||||
|
||||
if (blockSize >= 64) {
|
||||
x[tid] = val;
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int i = (blockSize >> 1); i >= 64; i >>= 1) {
|
||||
if (tid < i) x[tid] = fmaxf(fabsf(x[tid]), fabsf(x[tid + i]));
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
T final;
|
||||
|
||||
if (tid < 32) {
|
||||
if (blockSize >= 64)
|
||||
final = fmaxf(fabsf(x[tid]), fabsf(x[tid + 32]));
|
||||
else
|
||||
final = val;
|
||||
// __SYNCWARP();
|
||||
|
||||
#pragma unroll
|
||||
for (int i = 16; i >= lanes; i >>= 1)
|
||||
final =
|
||||
fmaxf(fabsf(final), fabsf(__shfl_down_sync(0xffffffff, final, i)));
|
||||
}
|
||||
|
||||
if (share_result) {
|
||||
if (tid < lanes) x[tid] = final; // EpilogueOp
|
||||
// Make sure the smem result is visible to all warps.
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
return final;
|
||||
}
|
||||
|
|
|
@ -7,7 +7,7 @@
|
|||
#include <cassert>
|
||||
#include <vector>
|
||||
|
||||
#include "compat.h"
|
||||
#include "../common/micros.h"
|
||||
|
||||
namespace {
|
||||
|
||||
|
|
|
@ -9,7 +9,7 @@
|
|||
#include "ATen/AccumulateType.h"
|
||||
#include "ATen/cuda/CUDAContext.h"
|
||||
#include "ATen/cuda/DeviceUtils.cuh"
|
||||
#include "type_shim.h"
|
||||
#include "../common/micros.h"
|
||||
|
||||
template <typename U>
|
||||
__device__ void cuWelfordOnlineSum(const U curr, U& mu, U& sigma2, U& count) {
|
||||
|
|
|
@ -15,7 +15,7 @@
|
|||
#include <assert.h>
|
||||
|
||||
#include "multi_tensor_apply.cuh"
|
||||
#include "type_shim.h"
|
||||
#include "../common/micros.h"
|
||||
|
||||
#define BLOCK_SIZE 512
|
||||
#define ILP 4
|
||||
|
|
|
@ -12,7 +12,7 @@
|
|||
#include <assert.h>
|
||||
#include <c10/cuda/CUDAGuard.h>
|
||||
|
||||
#include "compat.h"
|
||||
#include "../common/micros.h"
|
||||
|
||||
// #include <iostream>
|
||||
|
||||
|
|
|
@ -11,7 +11,8 @@
|
|||
#include <assert.h>
|
||||
|
||||
#include "multi_tensor_apply.cuh"
|
||||
#include "type_shim.h"
|
||||
#include "../common/micros.h"
|
||||
#include "include/block_reduce.h"
|
||||
|
||||
#define BLOCK_SIZE 512
|
||||
#define ILP 4
|
||||
|
|
|
@ -10,7 +10,7 @@
|
|||
#include <assert.h>
|
||||
|
||||
#include "multi_tensor_apply.cuh"
|
||||
#include "type_shim.h"
|
||||
#include "../common/micros.h"
|
||||
|
||||
#define BLOCK_SIZE 512
|
||||
#define ILP 4
|
||||
|
|
|
@ -10,7 +10,7 @@
|
|||
#include <sstream>
|
||||
|
||||
#include "multi_tensor_apply.cuh"
|
||||
#include "type_shim.h"
|
||||
#include "../common/micros.h"
|
||||
|
||||
#define BLOCK_SIZE 512
|
||||
#define ILP 4
|
||||
|
|
|
@ -7,7 +7,7 @@
|
|||
#include <assert.h>
|
||||
#include <cuda_runtime.h>
|
||||
|
||||
#include "compat.h"
|
||||
#include "../common/micros.h"
|
||||
#include "multi_tensor_apply.cuh"
|
||||
|
||||
#define BLOCK_SIZE 512
|
||||
|
|
|
@ -10,7 +10,7 @@
|
|||
#include <torch/extension.h>
|
||||
|
||||
#include "scaled_masked_softmax.h"
|
||||
#include "type_shim.h"
|
||||
#include "../common/micros.h"
|
||||
|
||||
namespace multihead_attn {
|
||||
namespace fused_softmax {
|
||||
|
|
|
@ -10,7 +10,7 @@
|
|||
#include <torch/extension.h>
|
||||
|
||||
#include "scaled_upper_triang_masked_softmax.h"
|
||||
#include "type_shim.h"
|
||||
#include "../common/micros.h"
|
||||
|
||||
namespace multihead_attn {
|
||||
namespace fused_softmax {
|
||||
|
|
|
@ -0,0 +1,36 @@
|
|||
#pragma once
|
||||
|
||||
#include <cuda.h>
|
||||
#include <cuda_runtime.h>
|
||||
|
||||
namespace colossalAI {
|
||||
namespace cuda {
|
||||
namespace utils {
|
||||
|
||||
GPULaunchConfig GPUGetGPULaunchConfig1D(int64_t numel, int vec_size);
|
||||
|
||||
// TODO(LiuYang): to be implemented
|
||||
GPULaunchConfig GPUGetGPULaunchConfig2D(int64_t numel, int vec_size);
|
||||
|
||||
// TODO(LiuYang): to be implemented
|
||||
GPULaunchConfig GPUGetGPULaunchConfig3D(int64_t numel, int vec_size);
|
||||
|
||||
class GPULaunchConfig {
|
||||
public:
|
||||
GPULaunchConfig(){};
|
||||
GPULaunchConfig(const dim3& block, const dim3& grid)
|
||||
: block_(block), grid_(grid) {}
|
||||
friend GPULaunchConfig GPUGetGPULaunchConfig1D(int64_t numel, int vec_size);
|
||||
|
||||
protected:
|
||||
void set_block(const dim3& dim) { block_ = dim; }
|
||||
void set_grid(const dim3& dim) { grid_ = dim; }
|
||||
|
||||
private:
|
||||
dim3 block_(1, 1, 1);
|
||||
dim3 grid_(1, 1, 1);
|
||||
}
|
||||
|
||||
} // namespace utils
|
||||
} // namespace cuda
|
||||
} // namespace colossalAI
|
|
@ -0,0 +1,12 @@
|
|||
#pragma once
|
||||
|
||||
#include <cuda.h>
|
||||
#include <cuda_runtime.h>
|
||||
|
||||
#define CUDA_CHECK(func) \
|
||||
{ \
|
||||
auto status = func; \
|
||||
if (status != cudaSuccess) { \
|
||||
LOG(FATAL) << "CUDA Error : " << cudaGetErrorString(status); \
|
||||
} \
|
||||
}
|
|
@ -0,0 +1,45 @@
|
|||
#include "nvgpu_dev_info.h"
|
||||
|
||||
#include <array>
|
||||
|
||||
namespace colossalAI {
|
||||
namespace cuda {
|
||||
namespace utils {
|
||||
|
||||
std::array<int, 3> NVGPUDevInfo::GetMaxGridDims() const {
|
||||
std::array<int, 3> ret;
|
||||
ret[0] = prop_->maxGridSize[0];
|
||||
ret[1] = prop_->maxGridSize[1];
|
||||
ret[2] = prop_->maxGridSize[2];
|
||||
return ret;
|
||||
}
|
||||
|
||||
std::array<int, 3> NVGPUDevInfo::GetMaxBlockDims() const {
|
||||
std::array<int, 3> ret;
|
||||
ret[0] = prop_->maxThreadsDim[0];
|
||||
ret[1] = prop_->maxThreadsDim[1];
|
||||
ret[2] = prop_->maxThreadsDim[2];
|
||||
return ret;
|
||||
}
|
||||
|
||||
std::array<int, 2> NVGPUDevInfo::GetCapability() const {
|
||||
std::array<int, 2> ret;
|
||||
ret[0] = prop_.major;
|
||||
ret[1] = prop_.minor;
|
||||
}
|
||||
|
||||
int NVGPUDevInfo::GetMultiProcessorCount() const {
|
||||
return prop_->multiProcessorCount;
|
||||
}
|
||||
|
||||
int NVGPUDevInfo::GetMaxThreadsPerMultiProcessor() const {
|
||||
return prop_->maxThreadsPerMultiProcessor;
|
||||
}
|
||||
|
||||
int NVGPUDevInfo::GetMaxThreadsPerBlock() const {
|
||||
return prop_->maxThreadsPerBlock;
|
||||
}
|
||||
|
||||
} // namespace utils
|
||||
} // namespace cuda
|
||||
} // namespace colossalAI
|
|
@ -0,0 +1,37 @@
|
|||
#pragma once
|
||||
|
||||
#include <cuda.h>
|
||||
#include <cuda_runtime.h>
|
||||
|
||||
#include <ostream>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#include "micros.h"
|
||||
#include "target.h"
|
||||
|
||||
namespace colossalAI {
|
||||
namespace cuda {
|
||||
namespace utils {
|
||||
|
||||
class NVGPUDevInfo {
|
||||
public:
|
||||
explicit NVGPUDevInfo(int device_num) : device_num_(device_num) {
|
||||
CUDA_CALL(cudaGetDeviceProperties(prop_, device));
|
||||
}
|
||||
|
||||
std::array<int, 3> GetMaxGridDims() const;
|
||||
std::array<int, 3> GetMaxBlockDims() const;
|
||||
std::array<int, 2> GetCapability() const;
|
||||
int GetMultiProcessorCount() const;
|
||||
int GetMaxThreadsPerMultiProcessor() const;
|
||||
int GetMaxThreadsPerBlock() const;
|
||||
|
||||
private:
|
||||
int device_num_;
|
||||
cudaDeviceProp* prop_;
|
||||
};
|
||||
|
||||
} // namespace utils
|
||||
} // namespace cuda
|
||||
} // namespace colossalAI
|
Loading…
Reference in New Issue