mirror of https://github.com/hpcaitech/ColossalAI
parent
1a2e90dcc1
commit
20722a8c93
|
@ -13,14 +13,20 @@ from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
|
||||||
@parameterize("scatter_dim", [0, 1, 2])
|
@parameterize("scatter_dim", [0, 1, 2])
|
||||||
@parameterize("dtype", [torch.bfloat16, torch.float16])
|
@parameterize("dtype", [torch.bfloat16, torch.float16])
|
||||||
@parameterize("fp8_format", ["e4m3", "e5m2"])
|
@parameterize("fp8_format", ["e4m3", "e5m2"])
|
||||||
def check_4gpu(shape, scatter_dim, dtype, fp8_format):
|
@parameterize("async_op", [True, False])
|
||||||
|
def check_4gpu(shape, scatter_dim, dtype, fp8_format, async_op):
|
||||||
x = torch.rand(shape, dtype=dtype, device=get_accelerator().get_current_device())
|
x = torch.rand(shape, dtype=dtype, device=get_accelerator().get_current_device())
|
||||||
input_list = list(torch.chunk(x, dim=scatter_dim, chunks=4))
|
input_list = list(torch.chunk(x, dim=scatter_dim, chunks=4))
|
||||||
input_list = [t.contiguous() for t in input_list]
|
input_list = [t.contiguous() for t in input_list]
|
||||||
output_origin = torch.empty_like(input_list[0])
|
output_origin = torch.empty_like(input_list[0])
|
||||||
output_fp8 = torch.empty_like(input_list[0])
|
output_fp8 = torch.empty_like(input_list[0])
|
||||||
reduce_scatter(output_origin, input_list, group=_get_default_group())
|
origin_handle = reduce_scatter(output_origin, input_list, group=_get_default_group(), async_op=async_op)
|
||||||
reduce_scatter_fp8(output_fp8, input_list, group=_get_default_group(), fp8_format=fp8_format)
|
fp8_handle = reduce_scatter_fp8(
|
||||||
|
output_fp8, input_list, group=_get_default_group(), fp8_format=fp8_format, async_op=async_op
|
||||||
|
)
|
||||||
|
if async_op:
|
||||||
|
origin_handle.wait()
|
||||||
|
fp8_handle.wait()
|
||||||
assert_close(output_origin, output_fp8, rtol=0.1, atol=0.1)
|
assert_close(output_origin, output_fp8, rtol=0.1, atol=0.1)
|
||||||
|
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue