mirror of https://github.com/hpcaitech/ColossalAI
reconstruct chat trainer and fix training script (#3588)
Co-authored-by: Yuanchen Xu <yuanchen.xu00@gmail.com>pull/3592/head
parent
dac127d0ee
commit
1ec0d386a9
|
@ -156,8 +156,10 @@ def main(args):
|
||||||
eos_token_id=tokenizer.eos_token_id,
|
eos_token_id=tokenizer.eos_token_id,
|
||||||
callbacks=[performance_evaluator])
|
callbacks=[performance_evaluator])
|
||||||
|
|
||||||
random_prompts = torch.randint(tokenizer.vocab_size, (1000, 400), device=torch.cuda.current_device())
|
random_prompts = torch.randint(tokenizer.vocab_size, (1000, 1, 400), device=torch.cuda.current_device())
|
||||||
trainer.fit(random_prompts,
|
random_attention_mask = torch.randint(1, (1000, 1, 400), device=torch.cuda.current_device()).to(torch.bool)
|
||||||
|
random_pretrain = [{'input_ids':random_prompts[i], 'labels':random_prompts[i], 'attention_mask':random_attention_mask[i]} for i in range(1000)]
|
||||||
|
trainer.fit(random_prompts, random_pretrain,
|
||||||
num_episodes=args.num_episodes,
|
num_episodes=args.num_episodes,
|
||||||
max_timesteps=args.max_timesteps,
|
max_timesteps=args.max_timesteps,
|
||||||
update_timesteps=args.update_timesteps)
|
update_timesteps=args.update_timesteps)
|
||||||
|
|
|
@ -149,8 +149,10 @@ def main(args):
|
||||||
eos_token_id=tokenizer.eos_token_id,
|
eos_token_id=tokenizer.eos_token_id,
|
||||||
callbacks=[performance_evaluator])
|
callbacks=[performance_evaluator])
|
||||||
|
|
||||||
random_prompts = torch.randint(tokenizer.vocab_size, (1000, 400), device=torch.cuda.current_device())
|
random_prompts = torch.randint(tokenizer.vocab_size, (1000, 1, 400), device=torch.cuda.current_device())
|
||||||
trainer.fit(random_prompts,
|
random_attention_mask = torch.randint(1, (1000, 1, 400), device=torch.cuda.current_device()).to(torch.bool)
|
||||||
|
random_pretrain = [{'input_ids':random_prompts[i], 'labels':random_prompts[i], 'attention_mask':random_attention_mask[i]} for i in range(1000)]
|
||||||
|
trainer.fit(random_prompts, random_pretrain,
|
||||||
num_episodes=args.num_episodes,
|
num_episodes=args.num_episodes,
|
||||||
max_timesteps=args.max_timesteps,
|
max_timesteps=args.max_timesteps,
|
||||||
update_timesteps=args.update_timesteps)
|
update_timesteps=args.update_timesteps)
|
||||||
|
|
|
@ -2,15 +2,10 @@ from abc import ABC, abstractmethod
|
||||||
from typing import Any, Callable, Dict, List, Optional, Union
|
from typing import Any, Callable, Dict, List, Optional, Union
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
from coati.experience_maker import Experience, ExperienceMaker
|
from coati.experience_maker import Experience
|
||||||
from coati.replay_buffer import ReplayBuffer
|
|
||||||
from torch import Tensor
|
|
||||||
from torch.utils.data import DistributedSampler
|
|
||||||
from tqdm import tqdm
|
|
||||||
|
|
||||||
from .callbacks import Callback
|
from .callbacks import Callback
|
||||||
from .strategies import Strategy
|
from .strategies import Strategy
|
||||||
from .utils import is_rank_0
|
|
||||||
|
|
||||||
|
|
||||||
class Trainer(ABC):
|
class Trainer(ABC):
|
||||||
|
@ -19,113 +14,28 @@ class Trainer(ABC):
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
strategy (Strategy):the strategy to use for training
|
strategy (Strategy):the strategy to use for training
|
||||||
experience_maker (ExperienceMaker): the experience maker to use for produce experience to fullfill replay buffer
|
|
||||||
replay_buffer (ReplayBuffer): the replay buffer to use for training
|
|
||||||
experience_batch_size (int, defaults to 8): the batch size to use for experience generation
|
|
||||||
max_epochs (int, defaults to 1): the number of epochs of training process
|
max_epochs (int, defaults to 1): the number of epochs of training process
|
||||||
tokenizer (Callable, optional): the tokenizer to use for tokenizing the input
|
tokenizer (Callable, optional): the tokenizer to use for tokenizing the input
|
||||||
sample_replay_buffer (bool, defaults to False): whether to sample from replay buffer
|
dataloader_pin_memory (bool, defaults to True): whether to pin memory for data loader
|
||||||
data_loader_pin_memory (bool, defaults to True): whether to pin memory for data loader
|
|
||||||
callbacks (List[Callback], defaults to []): the callbacks to call during training process
|
callbacks (List[Callback], defaults to []): the callbacks to call during training process
|
||||||
generate_kwargs (dict, optional): the kwargs to use while model generating
|
generate_kwargs (dict, optional): the kwargs to use while model generating
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self,
|
def __init__(self,
|
||||||
strategy: Strategy,
|
strategy: Strategy,
|
||||||
experience_maker: ExperienceMaker,
|
|
||||||
replay_buffer: ReplayBuffer,
|
|
||||||
experience_batch_size: int = 8,
|
|
||||||
max_epochs: int = 1,
|
max_epochs: int = 1,
|
||||||
tokenizer: Optional[Callable[[Any], dict]] = None,
|
tokenizer: Optional[Callable[[Any], dict]] = None,
|
||||||
sample_replay_buffer: bool = False,
|
|
||||||
dataloader_pin_memory: bool = True,
|
dataloader_pin_memory: bool = True,
|
||||||
callbacks: List[Callback] = [],
|
callbacks: List[Callback] = [],
|
||||||
**generate_kwargs) -> None:
|
**generate_kwargs) -> None:
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.strategy = strategy
|
self.strategy = strategy
|
||||||
self.experience_maker = experience_maker
|
|
||||||
self.replay_buffer = replay_buffer
|
|
||||||
self.experience_batch_size = experience_batch_size
|
|
||||||
self.max_epochs = max_epochs
|
self.max_epochs = max_epochs
|
||||||
self.tokenizer = tokenizer
|
self.tokenizer = tokenizer
|
||||||
self.generate_kwargs = generate_kwargs
|
self.generate_kwargs = generate_kwargs
|
||||||
self.sample_replay_buffer = sample_replay_buffer
|
|
||||||
self.dataloader_pin_memory = dataloader_pin_memory
|
self.dataloader_pin_memory = dataloader_pin_memory
|
||||||
self.callbacks = callbacks
|
self.callbacks = callbacks
|
||||||
|
|
||||||
@abstractmethod
|
|
||||||
def training_step(self, experience: Experience) -> Dict[str, Any]:
|
|
||||||
pass
|
|
||||||
|
|
||||||
def _make_experience(self, inputs: Union[Tensor, Dict[str, Tensor]]) -> Experience:
|
|
||||||
if isinstance(inputs, Tensor):
|
|
||||||
return self.experience_maker.make_experience(inputs, **self.generate_kwargs)
|
|
||||||
elif isinstance(inputs, dict):
|
|
||||||
return self.experience_maker.make_experience(**inputs, **self.generate_kwargs)
|
|
||||||
else:
|
|
||||||
raise ValueError(f'Unsupported input type "{type(inputs)}"')
|
|
||||||
|
|
||||||
def _sample_prompts(self, prompts) -> list:
|
|
||||||
indices = list(range(len(prompts)))
|
|
||||||
sampled_indices = self.strategy.experience_sampler.choice(indices, self.experience_batch_size, replace=False)
|
|
||||||
return [prompts[i] for i in sampled_indices]
|
|
||||||
|
|
||||||
def _learn(self):
|
|
||||||
# replay buffer may be empty at first, we should rebuild at each training
|
|
||||||
if not self.sample_replay_buffer:
|
|
||||||
dataloader = self.strategy.setup_dataloader(self.replay_buffer, self.dataloader_pin_memory)
|
|
||||||
device = torch.cuda.current_device()
|
|
||||||
if self.sample_replay_buffer:
|
|
||||||
pbar = tqdm(range(self.max_epochs), desc='Train epoch', disable=not is_rank_0())
|
|
||||||
for _ in pbar:
|
|
||||||
experience = self.replay_buffer.sample()
|
|
||||||
metrics = self.training_step(experience)
|
|
||||||
pbar.set_postfix(metrics)
|
|
||||||
else:
|
|
||||||
for epoch in range(self.max_epochs):
|
|
||||||
self._on_learn_epoch_start(epoch)
|
|
||||||
if isinstance(dataloader.sampler, DistributedSampler):
|
|
||||||
dataloader.sampler.set_epoch(epoch)
|
|
||||||
pbar = tqdm(dataloader, desc=f'Train epoch [{epoch+1}/{self.max_epochs}]', disable=not is_rank_0())
|
|
||||||
for experience in pbar:
|
|
||||||
self._on_learn_batch_start()
|
|
||||||
experience.to_device(device)
|
|
||||||
metrics = self.training_step(experience)
|
|
||||||
self._on_learn_batch_end(metrics, experience)
|
|
||||||
pbar.set_postfix(metrics)
|
|
||||||
self._on_learn_epoch_end(epoch)
|
|
||||||
|
|
||||||
def fit(self,
|
|
||||||
prompt_dataloader,
|
|
||||||
pretrain_dataloader,
|
|
||||||
num_episodes: int = 50000,
|
|
||||||
max_timesteps: int = 500,
|
|
||||||
update_timesteps: int = 5000) -> None:
|
|
||||||
time = 0
|
|
||||||
self.pretrain_dataloader = pretrain_dataloader
|
|
||||||
self.prompt_dataloader = prompt_dataloader
|
|
||||||
self._on_fit_start()
|
|
||||||
for episode in range(num_episodes):
|
|
||||||
self._on_episode_start(episode)
|
|
||||||
for timestep in tqdm(range(max_timesteps),
|
|
||||||
desc=f'Episode [{episode+1}/{num_episodes}]',
|
|
||||||
disable=not is_rank_0()):
|
|
||||||
time += 1
|
|
||||||
prompts = next(iter(self.prompt_dataloader))
|
|
||||||
self._on_make_experience_start()
|
|
||||||
self.experience_maker.initial_model.to(torch.cuda.current_device())
|
|
||||||
self.experience_maker.reward_model.to(torch.cuda.current_device())
|
|
||||||
experience = self._make_experience(prompts)
|
|
||||||
self._on_make_experience_end(experience)
|
|
||||||
self.replay_buffer.append(experience)
|
|
||||||
if time % update_timesteps == 0:
|
|
||||||
self.experience_maker.initial_model.to('cpu')
|
|
||||||
self.experience_maker.reward_model.to('cpu')
|
|
||||||
self._learn()
|
|
||||||
self.replay_buffer.clear()
|
|
||||||
self._on_episode_end(episode)
|
|
||||||
self._on_fit_end()
|
|
||||||
|
|
||||||
# TODO(ver217): maybe simplify these code using context
|
# TODO(ver217): maybe simplify these code using context
|
||||||
def _on_fit_start(self) -> None:
|
def _on_fit_start(self) -> None:
|
||||||
for callback in self.callbacks:
|
for callback in self.callbacks:
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
from typing import Any, Callable, Dict, List, Optional
|
from typing import Any, Callable, Dict, List, Optional, Union
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
|
@ -7,12 +7,16 @@ from coati.models.base import Actor, Critic
|
||||||
from coati.models.generation_utils import update_model_kwargs_fn
|
from coati.models.generation_utils import update_model_kwargs_fn
|
||||||
from coati.models.loss import PolicyLoss, ValueLoss
|
from coati.models.loss import PolicyLoss, ValueLoss
|
||||||
from coati.replay_buffer import NaiveReplayBuffer
|
from coati.replay_buffer import NaiveReplayBuffer
|
||||||
|
from torch import Tensor
|
||||||
from torch.optim import Optimizer
|
from torch.optim import Optimizer
|
||||||
|
from torch.utils.data import DistributedSampler
|
||||||
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
|
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
|
||||||
|
from tqdm import tqdm
|
||||||
|
|
||||||
from .base import Trainer
|
from .base import Trainer
|
||||||
from .callbacks import Callback
|
from .callbacks import Callback
|
||||||
from .strategies import Strategy
|
from .strategies import Strategy
|
||||||
|
from .utils import is_rank_0
|
||||||
|
|
||||||
|
|
||||||
class PPOTrainer(Trainer):
|
class PPOTrainer(Trainer):
|
||||||
|
@ -33,6 +37,7 @@ class PPOTrainer(Trainer):
|
||||||
buffer_cpu_offload (bool, defaults to True): whether to offload replay buffer to cpu
|
buffer_cpu_offload (bool, defaults to True): whether to offload replay buffer to cpu
|
||||||
eps_clip (float, defaults to 0.2): the clip coefficient of policy loss
|
eps_clip (float, defaults to 0.2): the clip coefficient of policy loss
|
||||||
vf_coef (float, defaults to 1.0): the coefficient of value loss
|
vf_coef (float, defaults to 1.0): the coefficient of value loss
|
||||||
|
ptx_coef (float, defaults to 0.9): the coefficient of ptx loss
|
||||||
value_clip (float, defaults to 0.4): the clip coefficient of value loss
|
value_clip (float, defaults to 0.4): the clip coefficient of value loss
|
||||||
experience_batch_size (int, defaults to 8): the batch size to use for experience generation
|
experience_batch_size (int, defaults to 8): the batch size to use for experience generation
|
||||||
max_epochs (int, defaults to 1): the number of epochs of training process
|
max_epochs (int, defaults to 1): the number of epochs of training process
|
||||||
|
@ -69,8 +74,13 @@ class PPOTrainer(Trainer):
|
||||||
experience_maker = NaiveExperienceMaker(actor, critic, reward_model, initial_model, kl_coef)
|
experience_maker = NaiveExperienceMaker(actor, critic, reward_model, initial_model, kl_coef)
|
||||||
replay_buffer = NaiveReplayBuffer(train_batch_size, buffer_limit, buffer_cpu_offload)
|
replay_buffer = NaiveReplayBuffer(train_batch_size, buffer_limit, buffer_cpu_offload)
|
||||||
generate_kwargs = _set_default_generate_kwargs(strategy, generate_kwargs, actor)
|
generate_kwargs = _set_default_generate_kwargs(strategy, generate_kwargs, actor)
|
||||||
super().__init__(strategy, experience_maker, replay_buffer, experience_batch_size, max_epochs, tokenizer,
|
super().__init__(strategy, max_epochs, tokenizer, dataloader_pin_memory, callbacks, **generate_kwargs)
|
||||||
sample_replay_buffer, dataloader_pin_memory, callbacks, **generate_kwargs)
|
|
||||||
|
self.experience_maker = experience_maker
|
||||||
|
self.replay_buffer = replay_buffer
|
||||||
|
self.experience_batch_size = experience_batch_size
|
||||||
|
self.sample_replay_buffer = sample_replay_buffer
|
||||||
|
|
||||||
self.actor = actor
|
self.actor = actor
|
||||||
self.critic = critic
|
self.critic = critic
|
||||||
|
|
||||||
|
@ -82,6 +92,81 @@ class PPOTrainer(Trainer):
|
||||||
self.actor_optim = actor_optim
|
self.actor_optim = actor_optim
|
||||||
self.critic_optim = critic_optim
|
self.critic_optim = critic_optim
|
||||||
|
|
||||||
|
def _make_experience(self, inputs: Union[Tensor, Dict[str, Tensor]]) -> Experience:
|
||||||
|
if isinstance(inputs, Tensor):
|
||||||
|
return self.experience_maker.make_experience(inputs, **self.generate_kwargs)
|
||||||
|
elif isinstance(inputs, dict):
|
||||||
|
return self.experience_maker.make_experience(**inputs, **self.generate_kwargs)
|
||||||
|
else:
|
||||||
|
raise ValueError(f'Unsupported input type "{type(inputs)}"')
|
||||||
|
|
||||||
|
def _sample_prompts(self, prompts) -> list:
|
||||||
|
indices = list(range(len(prompts)))
|
||||||
|
sampled_indices = self.strategy.experience_sampler.choice(
|
||||||
|
indices, self.experience_batch_size, replace=False)
|
||||||
|
return [prompts[i] for i in sampled_indices]
|
||||||
|
|
||||||
|
def _learn(self):
|
||||||
|
# replay buffer may be empty at first, we should rebuild at each training
|
||||||
|
if not self.sample_replay_buffer:
|
||||||
|
dataloader = self.strategy.setup_dataloader(
|
||||||
|
self.replay_buffer, self.dataloader_pin_memory)
|
||||||
|
device = torch.cuda.current_device()
|
||||||
|
if self.sample_replay_buffer:
|
||||||
|
pbar = tqdm(range(self.max_epochs), desc='Train epoch',
|
||||||
|
disable=not is_rank_0())
|
||||||
|
for _ in pbar:
|
||||||
|
experience = self.replay_buffer.sample()
|
||||||
|
metrics = self.training_step(experience)
|
||||||
|
pbar.set_postfix(metrics)
|
||||||
|
else:
|
||||||
|
for epoch in range(self.max_epochs):
|
||||||
|
self._on_learn_epoch_start(epoch)
|
||||||
|
if isinstance(dataloader.sampler, DistributedSampler):
|
||||||
|
dataloader.sampler.set_epoch(epoch)
|
||||||
|
pbar = tqdm(
|
||||||
|
dataloader, desc=f'Train epoch [{epoch+1}/{self.max_epochs}]', disable=not is_rank_0())
|
||||||
|
for experience in pbar:
|
||||||
|
self._on_learn_batch_start()
|
||||||
|
experience.to_device(device)
|
||||||
|
metrics = self.training_step(experience)
|
||||||
|
self._on_learn_batch_end(metrics, experience)
|
||||||
|
pbar.set_postfix(metrics)
|
||||||
|
self._on_learn_epoch_end(epoch)
|
||||||
|
|
||||||
|
def fit(self,
|
||||||
|
prompt_dataloader,
|
||||||
|
pretrain_dataloader,
|
||||||
|
num_episodes: int = 50000,
|
||||||
|
max_timesteps: int = 500,
|
||||||
|
update_timesteps: int = 5000) -> None:
|
||||||
|
time = 0
|
||||||
|
self.pretrain_dataloader = pretrain_dataloader
|
||||||
|
self.prompt_dataloader = prompt_dataloader
|
||||||
|
self._on_fit_start()
|
||||||
|
for episode in range(num_episodes):
|
||||||
|
self._on_episode_start(episode)
|
||||||
|
for timestep in tqdm(range(max_timesteps),
|
||||||
|
desc=f'Episode [{episode+1}/{num_episodes}]',
|
||||||
|
disable=not is_rank_0()):
|
||||||
|
time += 1
|
||||||
|
prompts = next(iter(self.prompt_dataloader))
|
||||||
|
self._on_make_experience_start()
|
||||||
|
self.experience_maker.initial_model.to(
|
||||||
|
torch.cuda.current_device())
|
||||||
|
self.experience_maker.reward_model.to(
|
||||||
|
torch.cuda.current_device())
|
||||||
|
experience = self._make_experience(prompts)
|
||||||
|
self._on_make_experience_end(experience)
|
||||||
|
self.replay_buffer.append(experience)
|
||||||
|
if time % update_timesteps == 0:
|
||||||
|
self.experience_maker.initial_model.to('cpu')
|
||||||
|
self.experience_maker.reward_model.to('cpu')
|
||||||
|
self._learn()
|
||||||
|
self.replay_buffer.clear()
|
||||||
|
self._on_episode_end(episode)
|
||||||
|
self._on_fit_end()
|
||||||
|
|
||||||
def training_step(self, experience: Experience) -> Dict[str, float]:
|
def training_step(self, experience: Experience) -> Dict[str, float]:
|
||||||
self.actor.train()
|
self.actor.train()
|
||||||
self.critic.train()
|
self.critic.train()
|
||||||
|
|
|
@ -1,6 +1,5 @@
|
||||||
from abc import ABC
|
|
||||||
from datetime import datetime
|
from datetime import datetime
|
||||||
from typing import Optional
|
from typing import Optional, List
|
||||||
|
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
import torch
|
import torch
|
||||||
|
@ -10,11 +9,13 @@ from torch.utils.data import DataLoader, Dataset, DistributedSampler
|
||||||
from tqdm import tqdm
|
from tqdm import tqdm
|
||||||
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
|
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
|
||||||
|
|
||||||
|
from .callbacks import Callback
|
||||||
|
from .base import Trainer
|
||||||
from .strategies import Strategy
|
from .strategies import Strategy
|
||||||
from .utils import is_rank_0
|
from .utils import is_rank_0
|
||||||
|
|
||||||
|
|
||||||
class RewardModelTrainer(ABC):
|
class RewardModelTrainer(Trainer):
|
||||||
"""
|
"""
|
||||||
Trainer to use while training reward model.
|
Trainer to use while training reward model.
|
||||||
|
|
||||||
|
@ -23,11 +24,12 @@ class RewardModelTrainer(ABC):
|
||||||
strategy (Strategy): the strategy to use for training
|
strategy (Strategy): the strategy to use for training
|
||||||
optim(Optimizer): the optimizer to use for training
|
optim(Optimizer): the optimizer to use for training
|
||||||
loss_fn (callable): the loss function to use for training
|
loss_fn (callable): the loss function to use for training
|
||||||
train_dataset (Dataset): the dataset to use for training
|
train_dataloader (DataLoader): the dataloader to use for training
|
||||||
valid_dataset (Dataset): the dataset to use for validation
|
valid_dataloader (DataLoader): the dataloader to use for validation
|
||||||
eval_dataset (Dataset): the dataset to use for evaluation
|
eval_dataloader (DataLoader): the dataloader to use for evaluation
|
||||||
batch_size (int, defaults to 1): the batch size while training
|
batch_size (int, defaults to 1): the batch size while training
|
||||||
max_epochs (int, defaults to 2): the number of epochs to train
|
max_epochs (int, defaults to 2): the number of epochs to train
|
||||||
|
callbacks (List[Callback], defaults to []): the callbacks to call during training process
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(
|
def __init__(
|
||||||
|
@ -36,25 +38,19 @@ class RewardModelTrainer(ABC):
|
||||||
strategy: Strategy,
|
strategy: Strategy,
|
||||||
optim: Optimizer,
|
optim: Optimizer,
|
||||||
loss_fn,
|
loss_fn,
|
||||||
train_dataset: Dataset,
|
train_dataloader: DataLoader,
|
||||||
valid_dataset: Dataset,
|
valid_dataloader: DataLoader,
|
||||||
eval_dataset: Dataset,
|
eval_dataloader: DataLoader,
|
||||||
batch_size: int = 1,
|
batch_size: int = 1,
|
||||||
max_epochs: int = 1,
|
max_epochs: int = 1,
|
||||||
|
callbacks: List[Callback] = [],
|
||||||
) -> None:
|
) -> None:
|
||||||
super().__init__()
|
super().__init__(strategy, max_epochs, callbacks=callbacks)
|
||||||
self.strategy = strategy
|
|
||||||
self.epochs = max_epochs
|
|
||||||
train_sampler = None
|
train_sampler = None
|
||||||
|
|
||||||
if dist.is_initialized() and dist.get_world_size() > 1:
|
self.train_dataloader = train_dataloader
|
||||||
train_sampler = DistributedSampler(train_dataset, shuffle=True, seed=42, drop_last=True)
|
self.valid_dataloader = valid_dataloader
|
||||||
self.train_dataloader = DataLoader(train_dataset,
|
self.eval_dataloader = eval_dataloader
|
||||||
shuffle=(train_sampler is None),
|
|
||||||
sampler=train_sampler,
|
|
||||||
batch_size=batch_size)
|
|
||||||
self.valid_dataloader = DataLoader(valid_dataset, batch_size=batch_size, shuffle=True)
|
|
||||||
self.eval_dataloader = DataLoader(eval_dataset, batch_size=batch_size, shuffle=True)
|
|
||||||
|
|
||||||
self.model = strategy.setup_model(model)
|
self.model = strategy.setup_model(model)
|
||||||
self.loss_fn = loss_fn
|
self.loss_fn = loss_fn
|
||||||
|
@ -86,8 +82,8 @@ class RewardModelTrainer(ABC):
|
||||||
|
|
||||||
def fit(self):
|
def fit(self):
|
||||||
time = datetime.now()
|
time = datetime.now()
|
||||||
epoch_bar = tqdm(range(self.epochs), desc='Train epoch', disable=not is_rank_0())
|
epoch_bar = tqdm(range(self.max_epochs), desc='Train epoch', disable=not is_rank_0())
|
||||||
for epoch in range(self.epochs):
|
for epoch in range(self.max_epochs):
|
||||||
step_bar = tqdm(range(self.train_dataloader.__len__()),
|
step_bar = tqdm(range(self.train_dataloader.__len__()),
|
||||||
desc='Train step of epoch %d' % epoch,
|
desc='Train step of epoch %d' % epoch,
|
||||||
disable=not is_rank_0())
|
disable=not is_rank_0())
|
||||||
|
|
|
@ -1,7 +1,6 @@
|
||||||
import math
|
import math
|
||||||
import time
|
import time
|
||||||
from abc import ABC
|
from typing import Optional, List
|
||||||
from typing import Optional
|
|
||||||
|
|
||||||
import loralib as lora
|
import loralib as lora
|
||||||
import torch
|
import torch
|
||||||
|
@ -19,11 +18,13 @@ from transformers.trainer import get_scheduler
|
||||||
|
|
||||||
from colossalai.logging import get_dist_logger
|
from colossalai.logging import get_dist_logger
|
||||||
|
|
||||||
|
from .callbacks import Callback
|
||||||
|
from .base import Trainer
|
||||||
from .strategies import Strategy
|
from .strategies import Strategy
|
||||||
from .utils import is_rank_0
|
from .utils import is_rank_0
|
||||||
|
|
||||||
|
|
||||||
class SFTTrainer(ABC):
|
class SFTTrainer(Trainer):
|
||||||
"""
|
"""
|
||||||
Trainer to use while training reward model.
|
Trainer to use while training reward model.
|
||||||
|
|
||||||
|
@ -35,6 +36,7 @@ class SFTTrainer(ABC):
|
||||||
eval_dataloader: the dataloader to use for evaluation
|
eval_dataloader: the dataloader to use for evaluation
|
||||||
batch_size (int, defaults to 1): the batch size while training
|
batch_size (int, defaults to 1): the batch size while training
|
||||||
max_epochs (int, defaults to 2): the number of epochs to train
|
max_epochs (int, defaults to 2): the number of epochs to train
|
||||||
|
callbacks (List[Callback], defaults to []): the callbacks to call during training process
|
||||||
optim_kwargs (dict, defaults to {'lr':1e-4}): the kwargs to use while initializing optimizer
|
optim_kwargs (dict, defaults to {'lr':1e-4}): the kwargs to use while initializing optimizer
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
@ -48,10 +50,9 @@ class SFTTrainer(ABC):
|
||||||
batch_size: int = 1,
|
batch_size: int = 1,
|
||||||
max_epochs: int = 2,
|
max_epochs: int = 2,
|
||||||
accimulation_steps: int = 8,
|
accimulation_steps: int = 8,
|
||||||
|
callbacks: List[Callback] = [],
|
||||||
) -> None:
|
) -> None:
|
||||||
super().__init__()
|
super().__init__(strategy, max_epochs, callbacks=callbacks)
|
||||||
self.strategy = strategy
|
|
||||||
self.epochs = max_epochs
|
|
||||||
self.train_dataloader = train_dataloader
|
self.train_dataloader = train_dataloader
|
||||||
self.eval_dataloader = eval_dataloader
|
self.eval_dataloader = eval_dataloader
|
||||||
|
|
||||||
|
@ -62,7 +63,7 @@ class SFTTrainer(ABC):
|
||||||
|
|
||||||
self.accimulation_steps = accimulation_steps
|
self.accimulation_steps = accimulation_steps
|
||||||
num_update_steps_per_epoch = len(train_dataloader) // self.accimulation_steps
|
num_update_steps_per_epoch = len(train_dataloader) // self.accimulation_steps
|
||||||
max_steps = math.ceil(self.epochs * num_update_steps_per_epoch)
|
max_steps = math.ceil(self.max_epochs * num_update_steps_per_epoch)
|
||||||
|
|
||||||
self.scheduler = get_scheduler("cosine",
|
self.scheduler = get_scheduler("cosine",
|
||||||
self.optimizer,
|
self.optimizer,
|
||||||
|
@ -74,10 +75,10 @@ class SFTTrainer(ABC):
|
||||||
wandb.watch(self.model)
|
wandb.watch(self.model)
|
||||||
total_loss = 0
|
total_loss = 0
|
||||||
# epoch_bar = tqdm(range(self.epochs), desc='Epochs', disable=not is_rank_0())
|
# epoch_bar = tqdm(range(self.epochs), desc='Epochs', disable=not is_rank_0())
|
||||||
step_bar = tqdm(range(len(self.train_dataloader) // self.accimulation_steps * self.epochs),
|
step_bar = tqdm(range(len(self.train_dataloader) // self.accimulation_steps * self.max_epochs),
|
||||||
desc=f'steps',
|
desc=f'steps',
|
||||||
disable=not is_rank_0())
|
disable=not is_rank_0())
|
||||||
for epoch in range(self.epochs):
|
for epoch in range(self.max_epochs):
|
||||||
|
|
||||||
# process_bar = tqdm(range(len(self.train_dataloader)), desc=f'Train process for{epoch}', disable=not is_rank_0())
|
# process_bar = tqdm(range(len(self.train_dataloader)), desc=f'Train process for{epoch}', disable=not is_rank_0())
|
||||||
# train
|
# train
|
||||||
|
@ -148,7 +149,7 @@ class SFTTrainer(ABC):
|
||||||
|
|
||||||
loss_mean = loss_sum / num_seen
|
loss_mean = loss_sum / num_seen
|
||||||
if dist.get_rank() == 0:
|
if dist.get_rank() == 0:
|
||||||
logger.info(f'Eval Epoch {epoch}/{self.epochs} loss {loss_mean}')
|
logger.info(f'Eval Epoch {epoch}/{self.max_epochs} loss {loss_mean}')
|
||||||
|
|
||||||
# epoch_bar.update()
|
# epoch_bar.update()
|
||||||
|
|
||||||
|
|
|
@ -114,8 +114,10 @@ def main(args):
|
||||||
eos_token_id=tokenizer.eos_token_id,
|
eos_token_id=tokenizer.eos_token_id,
|
||||||
callbacks=callbacks)
|
callbacks=callbacks)
|
||||||
|
|
||||||
random_prompts = torch.randint(tokenizer.vocab_size, (1000, 64), device=torch.cuda.current_device())
|
random_prompts = torch.randint(tokenizer.vocab_size, (1000, 1, 64), device=torch.cuda.current_device())
|
||||||
trainer.fit(random_prompts,
|
random_attention_mask = torch.randint(1, (1000, 1, 64), device=torch.cuda.current_device()).to(torch.bool)
|
||||||
|
random_pretrain = [{'input_ids':random_prompts[i], 'labels':random_prompts[i], 'attention_mask':random_attention_mask[i]} for i in range(1000)]
|
||||||
|
trainer.fit(random_prompts, random_pretrain,
|
||||||
num_episodes=args.num_episodes,
|
num_episodes=args.num_episodes,
|
||||||
max_timesteps=args.max_timesteps,
|
max_timesteps=args.max_timesteps,
|
||||||
update_timesteps=args.update_timesteps)
|
update_timesteps=args.update_timesteps)
|
||||||
|
@ -136,7 +138,7 @@ if __name__ == '__main__':
|
||||||
default='naive')
|
default='naive')
|
||||||
parser.add_argument('--model', type=str, default='gpt2', choices=['gpt2', 'bloom', 'opt', 'roberta'])
|
parser.add_argument('--model', type=str, default='gpt2', choices=['gpt2', 'bloom', 'opt', 'roberta'])
|
||||||
parser.add_argument('--pretrain', type=str, default=None)
|
parser.add_argument('--pretrain', type=str, default=None)
|
||||||
parser.add_argument('--save_path', type=str, default='actor_checkpoint_dummy.pt')
|
parser.add_argument('--save_path', type=str, default='actor_checkpoint_dummy')
|
||||||
parser.add_argument('--need_optim_ckpt', type=bool, default=False)
|
parser.add_argument('--need_optim_ckpt', type=bool, default=False)
|
||||||
parser.add_argument('--num_episodes', type=int, default=50)
|
parser.add_argument('--num_episodes', type=int, default=50)
|
||||||
parser.add_argument('--max_timesteps', type=int, default=10)
|
parser.add_argument('--max_timesteps', type=int, default=10)
|
||||||
|
|
|
@ -3,6 +3,7 @@ from random import randint
|
||||||
|
|
||||||
import loralib as lora
|
import loralib as lora
|
||||||
import torch
|
import torch
|
||||||
|
import torch.distributed as dist
|
||||||
from coati.dataset import HhRlhfDataset, RmStaticDataset
|
from coati.dataset import HhRlhfDataset, RmStaticDataset
|
||||||
from coati.models import LogExpLoss, LogSigLoss
|
from coati.models import LogExpLoss, LogSigLoss
|
||||||
from coati.models.base import RewardModel
|
from coati.models.base import RewardModel
|
||||||
|
@ -17,6 +18,8 @@ from coati.trainer.strategies import ColossalAIStrategy, DDPStrategy, NaiveStrat
|
||||||
from coati.utils import prepare_llama_tokenizer_and_embedding
|
from coati.utils import prepare_llama_tokenizer_and_embedding
|
||||||
from datasets import load_dataset
|
from datasets import load_dataset
|
||||||
from torch.optim import Adam
|
from torch.optim import Adam
|
||||||
|
from torch.utils.data import DataLoader
|
||||||
|
from torch.utils.data.distributed import DistributedSampler
|
||||||
from transformers import AutoTokenizer, BloomTokenizerFast, DebertaV2Tokenizer, LlamaTokenizer, RobertaTokenizer
|
from transformers import AutoTokenizer, BloomTokenizerFast, DebertaV2Tokenizer, LlamaTokenizer, RobertaTokenizer
|
||||||
from transformers.models.gpt2.tokenization_gpt2 import GPT2Tokenizer
|
from transformers.models.gpt2.tokenization_gpt2 import GPT2Tokenizer
|
||||||
|
|
||||||
|
@ -120,13 +123,38 @@ def train(args):
|
||||||
else:
|
else:
|
||||||
raise ValueError(f'Unsupported dataset "{args.dataset}"')
|
raise ValueError(f'Unsupported dataset "{args.dataset}"')
|
||||||
|
|
||||||
|
if dist.is_initialized() and dist.get_world_size() > 1:
|
||||||
|
train_sampler = DistributedSampler(train_dataset, shuffle=True, seed=42, drop_last=True, rank=dist.get_rank(),
|
||||||
|
num_replicas=dist.get_world_size())
|
||||||
|
valid_sampler = DistributedSampler(valid_dataset, shuffle=True, seed=42, drop_last=True, rank=dist.get_rank(),
|
||||||
|
num_replicas=dist.get_world_size())
|
||||||
|
eval_sampler = DistributedSampler(eval_dataset, shuffle=True, seed=42, drop_last=True, rank=dist.get_rank(),
|
||||||
|
num_replicas=dist.get_world_size())
|
||||||
|
else:
|
||||||
|
train_sampler = None
|
||||||
|
valid_sampler = None
|
||||||
|
eval_sampler = None
|
||||||
|
|
||||||
|
train_dataloader = DataLoader(train_dataset,
|
||||||
|
shuffle=(train_sampler is None),
|
||||||
|
sampler=train_sampler,
|
||||||
|
batch_size=args.batch_size,
|
||||||
|
pin_memory=True)
|
||||||
|
|
||||||
|
valid_dataloader = DataLoader(valid_dataset, shuffle=(valid_sampler is None),
|
||||||
|
sampler=valid_sampler,
|
||||||
|
batch_size=args.batch_size, pin_memory=True)
|
||||||
|
|
||||||
|
eval_dataloader = DataLoader(eval_dataset, shuffle=(eval_sampler is None),
|
||||||
|
sampler=eval_sampler, batch_size=args.batch_size, pin_memory=True)
|
||||||
|
|
||||||
trainer = RewardModelTrainer(model=model,
|
trainer = RewardModelTrainer(model=model,
|
||||||
strategy=strategy,
|
strategy=strategy,
|
||||||
optim=optim,
|
optim=optim,
|
||||||
loss_fn=loss_fn,
|
loss_fn=loss_fn,
|
||||||
train_dataset=train_dataset,
|
train_dataloader=train_dataloader,
|
||||||
valid_dataset=valid_dataset,
|
valid_dataloader=valid_dataloader,
|
||||||
eval_dataset=eval_dataset,
|
eval_dataloader=eval_dataloader,
|
||||||
batch_size=args.batch_size,
|
batch_size=args.batch_size,
|
||||||
max_epochs=args.max_epochs)
|
max_epochs=args.max_epochs)
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue