[moe] add checkpoint for moe models (#3354)

* [moe] add checkpoint for moe models

* [hotfix] fix bugs in unit test
pull/3367/head
HELSON 2023-03-31 09:20:33 +08:00 committed by GitHub
parent fee2af8610
commit 1a1d68b053
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 517 additions and 384 deletions

View File

@ -1,3 +1,4 @@
from .checkpoint import load_moe_model, save_moe_model
from .experts import Experts, FFNExperts, TPExperts
from .layers import MoeLayer, MoeModule
from .routers import MoeRouter, Top1Router, Top2Router
@ -5,5 +6,5 @@ from .utils import NormalNoiseGenerator, UniformNoiseGenerator, build_ffn_expert
__all__ = [
'Experts', 'FFNExperts', 'TPExperts', 'Top1Router', 'Top2Router', 'MoeLayer', 'NormalNoiseGenerator',
'UniformNoiseGenerator', 'build_ffn_experts', 'MoeModule', 'MoeRouter'
'UniformNoiseGenerator', 'build_ffn_experts', 'MoeModule', 'MoeRouter', 'save_moe_model', 'load_moe_model'
]

View File

@ -0,0 +1,40 @@
import torch
import torch.distributed as dist
import torch.nn as nn
from .experts import MoeExperts
def save_moe_model(model: nn.Module, save_path: str):
state_dict = model.state_dict()
if dist.get_rank() == 0:
torch.save(state_dict, save_path)
dist.barrier()
def load_moe_model(model: nn.Module, load_path: str):
state_dict = torch.load(load_path)
for prefix, module in model.named_modules():
if prefix.endswith('.moe_layer.experts'):
# this module should be an Experts instance
assert isinstance(module, MoeExperts)
ep_rank = dist.get_rank(module.dist_info.ep_group)
num_local = module.num_local_experts
for i in range(num_local):
expert_id = ep_rank * num_local + i
for name, _ in module.experts[i].named_parameters():
cur_key = f'{prefix}.experts.{i}.{name}'
param_key = f'{prefix}.experts.{expert_id}.{name}'
load_param = state_dict[param_key]
state_dict[cur_key] = load_param
for name, _ in module.experts[0].named_parameters():
pop_pre = f'{prefix}.experts.'
pop_suf = f'.{name}'
for i in range(num_local, module.num_total_experts):
pop_key = f'{pop_pre}{i}{pop_suf}'
state_dict.pop(pop_key)
model.load_state_dict(state_dict)

View File

@ -1,12 +1,15 @@
import math
from copy import deepcopy
from typing import Type
import torch
import torch.distributed as dist
import torch.nn as nn
from colossalai.context import ParallelMode, seed
from colossalai.utils import get_current_device
from colossalai.context.moe_context import MOE_CONTEXT
from colossalai.utils import get_current_device
from colossalai.zero.init_ctx import no_shard_zero_decrator
from typing import Type
class MoeExperts(nn.Module):
@ -20,6 +23,7 @@ class MoeExperts(nn.Module):
assert comm_name in {"all_to_all", "all_gather"}, \
"This kind of communication has not been implemented yet.\n Please use Experts build function."
self.comm_name = comm_name
self.num_total_experts = num_experts
# Get the configuration of experts' deployment and parallel information from moe contex
self.num_local_experts, self.dist_info = MOE_CONTEXT.get_info(num_experts)
@ -61,6 +65,33 @@ class Experts(MoeExperts):
output = torch.cat(expert_output, dim=1).contiguous()
return output
def state_dict(self, destination=None, prefix='', keep_vars=False):
assert keep_vars == False, "Only support keep_vars=False now"
dp_rank = dist.get_rank(self.dist_info.dp_group)
ep_rank = dist.get_rank(self.dist_info.ep_group)
submodule_dict = dict()
example_submodule = None
for name, subm in self.experts.named_modules():
if subm is self.experts:
continue
module_number = self.num_local_experts * ep_rank + int(name)
submodule_dict[module_number] = subm
example_submodule = subm
if dp_rank == 0:
local_prefix = prefix + 'experts.'
buffer_module = deepcopy(example_submodule)
for i in range(self.num_total_experts):
source_rank = i // self.num_local_experts
current_prefix = local_prefix + str(i) + '.'
comm_module = submodule_dict.get(i, buffer_module)
for name, param in comm_module.named_parameters():
dist.broadcast(param.data, src=source_rank, group=self.dist_info.ep_group)
if ep_rank == 0:
destination[current_prefix + name] = param.data.cpu()
dist.barrier()
class FFNExperts(MoeExperts):
"""Use torch.bmm to speed up for multiple experts.

View File

@ -1,17 +1,24 @@
import math
from typing import Optional, Tuple, Type
import torch
import torch.nn as nn
import torch.nn.functional as F
from colossalai.context.moe_context import MOE_CONTEXT
from colossalai.utils import get_current_device
from colossalai.nn.layer.moe._operation import COL_MOE_KERNEL_FLAG, AllToAll, AllGather, \
ReduceScatter, MoeDispatch, MoeCombine
from colossalai.nn.layer.moe.experts import MoeExperts, Experts
from colossalai.nn.layer.moe.utils import UniformNoiseGenerator, NormalNoiseGenerator
from colossalai.nn.layer.moe._operation import (
COL_MOE_KERNEL_FLAG,
AllGather,
AllToAll,
MoeCombine,
MoeDispatch,
ReduceScatter,
)
from colossalai.nn.layer.moe.experts import Experts, MoeExperts
from colossalai.nn.layer.moe.routers import MoeRouter, Top1Router, Top2Router
from colossalai.nn.layer.moe.utils import NormalNoiseGenerator, UniformNoiseGenerator
from colossalai.utils import get_current_device
from colossalai.zero.init_ctx import no_shard_zero_context, no_shard_zero_decrator
from typing import Optional, Type, Tuple
@no_shard_zero_decrator(is_replicated=True)
@ -178,16 +185,16 @@ class MoeModule(nn.Module):
self.residual_combine = nn.Linear(dim_model, 2, device=get_current_device())
if expert_instance is not None:
self.experts = expert_instance
my_experts = expert_instance
else:
assert expert_cls is not None, \
"Expert class can't be None when experts instance is not given"
self.experts = Experts(expert_cls, num_experts, **expert_args)
my_experts = Experts(expert_cls, num_experts, **expert_args)
self.moe_layer = MoeLayer(dim_model=dim_model,
num_experts=num_experts,
router=self.moe_router,
experts=self.experts)
experts=my_experts)
def forward(self, inputs: torch.Tensor):
moe_output, l_aux = self.moe_layer(inputs)

View File

@ -0,0 +1,54 @@
import os
from functools import partial
import pytest
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
import colossalai
from colossalai.context import MOE_CONTEXT
from colossalai.nn.layer.moe import load_moe_model, save_moe_model
from colossalai.testing import parameterize, rerun_if_address_is_in_use
from colossalai.utils import free_port, get_current_device
from colossalai.utils.model.colo_init_context import ColoInitContext
from tests.test_moe.test_moe_zero_init import MoeModel
from tests.test_tensor.common_utils import debug_print
from tests.test_zero.common import CONFIG
def exam_moe_checkpoint():
with ColoInitContext(device=get_current_device()):
model = MoeModel(checkpoint=True)
save_moe_model(model, 'temp_path.pth')
with ColoInitContext(device=get_current_device()):
other_model = MoeModel(checkpoint=True)
load_moe_model(other_model, 'temp_path.pth')
state_0 = model.state_dict()
state_1 = other_model.state_dict()
for k, v in state_0.items():
u = state_1.get(k)
assert torch.equal(u.data, v.data)
if dist.get_rank() == 0:
os.remove('temp_path.pth')
def _run_dist(rank, world_size, port):
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
MOE_CONTEXT.setup(seed=42)
exam_moe_checkpoint()
@pytest.mark.dist
@pytest.mark.parametrize("world_size", [2, 4])
@rerun_if_address_is_in_use()
def test_moe_checkpoint(world_size):
run_func = partial(_run_dist, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_moe_checkpoint(world_size=4)