[hotfix] fix bugs for unsharded parameters when restore data (#664)

pull/666/head
HELSON 2022-04-03 22:02:11 +08:00 committed by GitHub
parent 0aab52301e
commit 17e73e62cc
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
1 changed files with 11 additions and 5 deletions

View File

@ -132,7 +132,7 @@ class ShardedOptimizerV2(ColossalaiOptimizer):
# Store fp32 param shards
self._register_master_weight()
self._logger.debug(f"After init ShardedOptimizerV2 consumes {self.get_memory_usage()[0]/1e6} MB CUDA Memory!",
self._logger.debug(f"After init ShardedOptimizerV2 consumes {self.get_memory_usage()[0] / 1e6} MB CUDA Memory!",
ranks=[0])
self._use_memory_tracer = self.model.use_memory_tracer
@ -185,13 +185,13 @@ class ShardedOptimizerV2(ColossalaiOptimizer):
self._point_param_fp16_to_master_param()
self._logger.debug(
f"Before step ShardedOptimizerV2 consumes {self.get_memory_usage()[0]/1e6} MB CUDA Memory, {self.get_memory_usage()[1]/1e6} MB CUDA Memory!",
f"Before step ShardedOptimizerV2 consumes {self.get_memory_usage()[0] / 1e6} MB CUDA Memory, {self.get_memory_usage()[1] / 1e6} MB CUDA Memory!",
ranks=[0])
ret = self.optim.step(*args, **kwargs)
self._logger.debug(
f"After step ShardedOptimizerV2 consumes {self.get_memory_usage()[0]/1e6} MB CUDA Memory, {self.get_memory_usage()[1]/1e6} MB CUDA Memory!",
f"After step ShardedOptimizerV2 consumes {self.get_memory_usage()[0] / 1e6} MB CUDA Memory, {self.get_memory_usage()[1] / 1e6} MB CUDA Memory!",
ranks=[0])
self._copy_master_param_to_param_fp16()
return ret
@ -264,8 +264,14 @@ class ShardedOptimizerV2(ColossalaiOptimizer):
reuse_fp16_shard = p.colo_attr.saved_grad.data_ptr() == p.colo_attr.sharded_data_tensor.data_ptr()
p.colo_attr.saved_grad.set_null()
if recover_data and reuse_fp16_shard:
# We should write like this to trigger ForceFP32Paramter's half method
p.data = self.master_params[p].payload
p.colo_attr.sharded_data_tensor.reset_payload(
colo_model_tensor_clone(self.master_params[p].payload.half(), torch.cuda.current_device()))
colo_model_tensor_clone(p.half(), torch.cuda.current_device()))
if not p.colo_attr.param_is_sharded:
# FIXME(hhc): add hook for unsharded parameters
p.data = p.colo_attr.sharded_data_tensor.payload
def sync_grad(self):
pass
@ -281,7 +287,7 @@ class ShardedOptimizerV2(ColossalaiOptimizer):
# As we only store param shard, we shard it here
self.shard_strategy.shard([p.colo_attr.sharded_data_tensor], self.dp_process_group)
self.master_params[p] = StatefulTensor(
cast_tensor_to_fp32(p.colo_attr.sharded_data_tensor.payload).to(self.device))
cast_tensor_to_fp32(p.colo_attr.sharded_data_tensor.payload.to(self.device)))
if not is_param_sharded and not self.keep_unshard:
# In this branch, there's no need to shard param
# So we gather here