|
|
|
@ -132,7 +132,7 @@ class ShardedOptimizerV2(ColossalaiOptimizer):
|
|
|
|
|
# Store fp32 param shards
|
|
|
|
|
self._register_master_weight()
|
|
|
|
|
|
|
|
|
|
self._logger.debug(f"After init ShardedOptimizerV2 consumes {self.get_memory_usage()[0]/1e6} MB CUDA Memory!",
|
|
|
|
|
self._logger.debug(f"After init ShardedOptimizerV2 consumes {self.get_memory_usage()[0] / 1e6} MB CUDA Memory!",
|
|
|
|
|
ranks=[0])
|
|
|
|
|
|
|
|
|
|
self._use_memory_tracer = self.model.use_memory_tracer
|
|
|
|
@ -185,13 +185,13 @@ class ShardedOptimizerV2(ColossalaiOptimizer):
|
|
|
|
|
self._point_param_fp16_to_master_param()
|
|
|
|
|
|
|
|
|
|
self._logger.debug(
|
|
|
|
|
f"Before step ShardedOptimizerV2 consumes {self.get_memory_usage()[0]/1e6} MB CUDA Memory, {self.get_memory_usage()[1]/1e6} MB CUDA Memory!",
|
|
|
|
|
f"Before step ShardedOptimizerV2 consumes {self.get_memory_usage()[0] / 1e6} MB CUDA Memory, {self.get_memory_usage()[1] / 1e6} MB CUDA Memory!",
|
|
|
|
|
ranks=[0])
|
|
|
|
|
|
|
|
|
|
ret = self.optim.step(*args, **kwargs)
|
|
|
|
|
|
|
|
|
|
self._logger.debug(
|
|
|
|
|
f"After step ShardedOptimizerV2 consumes {self.get_memory_usage()[0]/1e6} MB CUDA Memory, {self.get_memory_usage()[1]/1e6} MB CUDA Memory!",
|
|
|
|
|
f"After step ShardedOptimizerV2 consumes {self.get_memory_usage()[0] / 1e6} MB CUDA Memory, {self.get_memory_usage()[1] / 1e6} MB CUDA Memory!",
|
|
|
|
|
ranks=[0])
|
|
|
|
|
self._copy_master_param_to_param_fp16()
|
|
|
|
|
return ret
|
|
|
|
@ -264,8 +264,14 @@ class ShardedOptimizerV2(ColossalaiOptimizer):
|
|
|
|
|
reuse_fp16_shard = p.colo_attr.saved_grad.data_ptr() == p.colo_attr.sharded_data_tensor.data_ptr()
|
|
|
|
|
p.colo_attr.saved_grad.set_null()
|
|
|
|
|
if recover_data and reuse_fp16_shard:
|
|
|
|
|
# We should write like this to trigger ForceFP32Paramter's half method
|
|
|
|
|
p.data = self.master_params[p].payload
|
|
|
|
|
p.colo_attr.sharded_data_tensor.reset_payload(
|
|
|
|
|
colo_model_tensor_clone(self.master_params[p].payload.half(), torch.cuda.current_device()))
|
|
|
|
|
colo_model_tensor_clone(p.half(), torch.cuda.current_device()))
|
|
|
|
|
|
|
|
|
|
if not p.colo_attr.param_is_sharded:
|
|
|
|
|
# FIXME(hhc): add hook for unsharded parameters
|
|
|
|
|
p.data = p.colo_attr.sharded_data_tensor.payload
|
|
|
|
|
|
|
|
|
|
def sync_grad(self):
|
|
|
|
|
pass
|
|
|
|
@ -281,7 +287,7 @@ class ShardedOptimizerV2(ColossalaiOptimizer):
|
|
|
|
|
# As we only store param shard, we shard it here
|
|
|
|
|
self.shard_strategy.shard([p.colo_attr.sharded_data_tensor], self.dp_process_group)
|
|
|
|
|
self.master_params[p] = StatefulTensor(
|
|
|
|
|
cast_tensor_to_fp32(p.colo_attr.sharded_data_tensor.payload).to(self.device))
|
|
|
|
|
cast_tensor_to_fp32(p.colo_attr.sharded_data_tensor.payload.to(self.device)))
|
|
|
|
|
if not is_param_sharded and not self.keep_unshard:
|
|
|
|
|
# In this branch, there's no need to shard param
|
|
|
|
|
# So we gather here
|
|
|
|
|