mirror of https://github.com/hpcaitech/ColossalAI
[infer] Add Bloom inference policy and replaced methods (#4512)
* add bloom inference methods and policy * enable pass BatchInferState from model forward * revise bloom infer layers/policies * add engine for inference (draft) * add test for bloom infer * fix bloom infer policy and flow * revise bloom test * fix bloom file path * remove unused codes * fix bloom modeling * fix dir typo * fix trivial * fix policy * clean pr * trivial fixpull/4552/head
parent
f0aab7f9a8
commit
17cfa57140
|
@ -1,6 +1,4 @@
|
|||
from .modeling.llama import LlamaInferenceForwards
|
||||
from .pollcies.llama import LlamaModelInferPolicy
|
||||
from .engine import TPInferEngine
|
||||
from .kvcache_manager import MemoryManager
|
||||
|
||||
__all__ = ['LlamaInferenceForwards', 'LlamaModelInferPolicy', 'MemoryManager', 'TPInferEngine']
|
||||
__all__ = ['MemoryManager', 'TPInferEngine']
|
||||
|
|
|
@ -141,7 +141,6 @@ class TPInferEngine:
|
|||
|
||||
outputs = self.sharded_model.generate(**input_tokens, **generate_kwargs, early_stopping=False)
|
||||
|
||||
print(f"outputs.shape {outputs.shape}")
|
||||
return outputs
|
||||
|
||||
def prepare_batch_state(self, inputs) -> BatchInferState:
|
||||
|
@ -193,11 +192,7 @@ class TPInferEngine:
|
|||
start_index += curr_seq_len
|
||||
max_len_in_batch = curr_seq_len if curr_seq_len > max_len_in_batch else max_len_in_batch
|
||||
|
||||
print(" 666 ", max_len_in_batch)
|
||||
|
||||
block_loc = torch.empty((batch_size, self.max_input_len + self.max_output_len),
|
||||
dtype=torch.long,
|
||||
device='cuda')
|
||||
block_loc = torch.empty((batch_size, self.max_input_len + self.max_output_len), dtype=torch.long, device='cuda')
|
||||
batch_infer_state = BatchInferState(batch_size, max_len_in_batch)
|
||||
batch_infer_state.seq_len = seq_lengths.to('cuda') # might want to assign specific device
|
||||
batch_infer_state.start_loc = seq_start_indexes.to('cuda')
|
||||
|
|
|
@ -1,3 +1,4 @@
|
|||
from .bloom import BloomInferenceForwards
|
||||
from .llama import LlamaInferenceForwards
|
||||
|
||||
__all__ = ['LlamaInferenceForwards']
|
||||
__all__ = ['BloomInferenceForwards', 'LlamaInferenceForwards']
|
||||
|
|
|
@ -0,0 +1,559 @@
|
|||
import math
|
||||
import warnings
|
||||
from typing import List, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
||||
from torch.nn import functional as F
|
||||
from transformers.models.bloom.modeling_bloom import (
|
||||
BaseModelOutputWithPastAndCrossAttentions,
|
||||
BloomAttention,
|
||||
BloomBlock,
|
||||
BloomForCausalLM,
|
||||
BloomModel,
|
||||
CausalLMOutputWithCrossAttentions,
|
||||
)
|
||||
from transformers.utils import logging
|
||||
|
||||
from colossalai.inference.tensor_parallel.batch_infer_state import BatchInferState
|
||||
from colossalai.kernel.triton.context_attention import bloom_context_attn_fwd
|
||||
from colossalai.kernel.triton.copy_kv_cache_dest import copy_kv_cache_to_dest
|
||||
from colossalai.kernel.triton.token_attention_kernel import token_attention_fwd
|
||||
|
||||
|
||||
def generate_alibi(n_head, dtype=torch.float16):
|
||||
"""
|
||||
This method is originally the `build_alibi_tensor` function
|
||||
in `transformers/models/bloom/modeling_bloom.py`
|
||||
of the huggingface/transformers GitHub repository.
|
||||
|
||||
Copyright 2023 ModelTC Team
|
||||
Copyright 2022 HuggingFace Inc. team and BigScience workshop
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
"""
|
||||
|
||||
def get_slopes(n):
|
||||
|
||||
def get_slopes_power_of_2(n):
|
||||
start = 2**(-(2**-(math.log2(n) - 3)))
|
||||
ratio = start
|
||||
return [start * ratio**i for i in range(n)]
|
||||
|
||||
if math.log2(n).is_integer():
|
||||
return get_slopes_power_of_2(n)
|
||||
else:
|
||||
closest_power_of_2 = 2**math.floor(math.log2(n))
|
||||
return (get_slopes_power_of_2(closest_power_of_2) +
|
||||
get_slopes(2 * closest_power_of_2)[0::2][:n - closest_power_of_2])
|
||||
|
||||
slopes = torch.Tensor(get_slopes(n_head))
|
||||
head_alibi = slopes.to(dtype)
|
||||
return head_alibi # 1 * num_heads
|
||||
|
||||
|
||||
def generate_alibi_2(n_head, dtype=torch.float16):
|
||||
|
||||
def get_slopes_power_of_2(n):
|
||||
start = 2**(-(2**-(math.log2(n) - 3)))
|
||||
return [start * start**i for i in range(n)]
|
||||
|
||||
def get_slopes(n):
|
||||
if math.log2(n).is_integer():
|
||||
return get_slopes_power_of_2(n)
|
||||
else:
|
||||
closest_power_of_2 = 2**math.floor(math.log2(n))
|
||||
slopes_power_of_2 = get_slopes_power_of_2(closest_power_of_2)
|
||||
slopes_double = get_slopes(2 * closest_power_of_2)
|
||||
slopes_combined = slopes_power_of_2 + slopes_double[0::2][:n - closest_power_of_2]
|
||||
return slopes_combined
|
||||
|
||||
slopes = torch.tensor(get_slopes(n_head), dtype=dtype)
|
||||
return slopes
|
||||
|
||||
|
||||
class BloomInferenceForwards:
|
||||
"""
|
||||
This class serves a micro library for bloom inference forwards
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
def bloom_model_forward(
|
||||
self: BloomModel,
|
||||
input_ids: Optional[torch.LongTensor] = None,
|
||||
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
head_mask: Optional[torch.LongTensor] = None,
|
||||
inputs_embeds: Optional[torch.LongTensor] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
infer_state: Optional[BatchInferState] = None,
|
||||
**deprecated_arguments,
|
||||
) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPastAndCrossAttentions]:
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
if deprecated_arguments.pop("position_ids", False) is not False:
|
||||
# `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None`
|
||||
warnings.warn(
|
||||
"`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore"
|
||||
" passing `position_ids`.",
|
||||
FutureWarning,
|
||||
)
|
||||
if len(deprecated_arguments) > 0:
|
||||
raise ValueError(f"Got unexpected arguments: {deprecated_arguments}")
|
||||
|
||||
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||||
output_hidden_states = (output_hidden_states
|
||||
if output_hidden_states is not None else self.config.output_hidden_states)
|
||||
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
if input_ids is not None and inputs_embeds is not None:
|
||||
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
||||
elif input_ids is not None:
|
||||
batch_size, seq_length = input_ids.shape
|
||||
elif inputs_embeds is not None:
|
||||
batch_size, seq_length, _ = inputs_embeds.shape
|
||||
else:
|
||||
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
||||
|
||||
# still need to keep past_key_values to fit original forward flow
|
||||
if past_key_values is None:
|
||||
past_key_values = tuple([None] * len(self.h))
|
||||
|
||||
# Prepare head mask if needed
|
||||
# 1.0 in head_mask indicate we keep the head
|
||||
# attention_probs has shape batch_size x num_heads x N x N
|
||||
# head_mask has shape n_layer x batch x num_heads x N x N
|
||||
head_mask = self.get_head_mask(head_mask, self.config.n_layer)
|
||||
|
||||
if inputs_embeds is None:
|
||||
inputs_embeds = self.word_embeddings(input_ids)
|
||||
|
||||
hidden_states = self.word_embeddings_layernorm(inputs_embeds)
|
||||
|
||||
presents = () if use_cache else None
|
||||
all_self_attentions = () if output_attentions else None
|
||||
all_hidden_states = () if output_hidden_states else None
|
||||
|
||||
if self.gradient_checkpointing and self.training:
|
||||
if use_cache:
|
||||
logger.warning_once(
|
||||
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...")
|
||||
use_cache = False
|
||||
|
||||
# NOTE determine if BatchInferState is passed in via arg
|
||||
# if not, get the attr binded to the model
|
||||
# We might wantto remove setattr later
|
||||
if infer_state is None:
|
||||
assert hasattr(self, 'infer_state')
|
||||
infer_state = self.infer_state
|
||||
|
||||
# Compute alibi tensor: check build_alibi_tensor documentation
|
||||
seq_length_with_past = seq_length
|
||||
past_key_values_length = 0
|
||||
# if self.cache_manager.past_key_values_length > 0:
|
||||
if infer_state.cache_manager.past_key_values_length > 0:
|
||||
# update the past key values length in cache manager,
|
||||
# TODO use BatchInferState.past_key_values_length instead the one in cache manager
|
||||
past_key_values_length = infer_state.cache_manager.past_key_values_length
|
||||
seq_length_with_past = seq_length_with_past + past_key_values_length
|
||||
|
||||
# infer_state.cache_manager = self.cache_manager
|
||||
|
||||
if use_cache and seq_length != 1:
|
||||
# prefill stage
|
||||
infer_state.is_context_stage = True # set prefill stage, notify attention layer
|
||||
infer_state.context_mem_index = infer_state.cache_manager.alloc(infer_state.total_token_num)
|
||||
BatchInferState.init_block_loc(infer_state.block_loc, infer_state.seq_len, seq_length,
|
||||
infer_state.context_mem_index)
|
||||
else:
|
||||
infer_state.is_context_stage = False
|
||||
alloc_mem = infer_state.cache_manager.alloc_contiguous(batch_size)
|
||||
if alloc_mem is not None:
|
||||
infer_state.decode_is_contiguous = True
|
||||
infer_state.decode_mem_index = alloc_mem[0]
|
||||
infer_state.decode_mem_start = alloc_mem[1]
|
||||
infer_state.decode_mem_end = alloc_mem[2]
|
||||
infer_state.block_loc[:, seq_length_with_past - 1] = infer_state.decode_mem_index
|
||||
else:
|
||||
print(f" *** Encountered allocation non-contiguous")
|
||||
print(
|
||||
f" infer_state.cache_manager.past_key_values_length: {infer_state.cache_manager.past_key_values_length}"
|
||||
)
|
||||
infer_state.decode_is_contiguous = False
|
||||
alloc_mem = infer_state.cache_manager.alloc(batch_size)
|
||||
infer_state.decode_mem_index = alloc_mem
|
||||
# infer_state.decode_key_buffer = torch.empty((batch_size, self.tp_head_num_, self.head_dim_), dtype=torch.float16, device="cuda")
|
||||
# infer_state.decode_value_buffer = torch.empty((batch_size, self.tp_head_num_, self.head_dim_), dtype=torch.float16, device="cuda")
|
||||
infer_state.block_loc[:, seq_length_with_past - 1] = infer_state.decode_mem_index
|
||||
|
||||
if attention_mask is None:
|
||||
attention_mask = torch.ones((batch_size, seq_length_with_past), device=hidden_states.device)
|
||||
else:
|
||||
attention_mask = attention_mask.to(hidden_states.device)
|
||||
|
||||
# TODO revise: we might want to store a single 1D alibi(length is #heads) in model,
|
||||
# or store to BatchInferState to prevent re-calculating
|
||||
# When we have multiple process group (e.g. dp together with tp), we need to pass the pg to here
|
||||
# alibi = generate_alibi(self.num_heads).contiguous().cuda()
|
||||
tp_size = dist.get_world_size()
|
||||
curr_tp_rank = dist.get_rank()
|
||||
alibi = generate_alibi(self.num_heads * tp_size).contiguous()[curr_tp_rank * self.num_heads:(curr_tp_rank + 1) *
|
||||
self.num_heads].cuda()
|
||||
causal_mask = self._prepare_attn_mask(
|
||||
attention_mask,
|
||||
input_shape=(batch_size, seq_length),
|
||||
past_key_values_length=past_key_values_length,
|
||||
)
|
||||
|
||||
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
|
||||
if output_hidden_states:
|
||||
all_hidden_states = all_hidden_states + (hidden_states,)
|
||||
|
||||
if self.gradient_checkpointing and self.training:
|
||||
# FIXME: currently our KV cache manager does not handle this condition
|
||||
def create_custom_forward(module):
|
||||
|
||||
def custom_forward(*inputs):
|
||||
# None for past_key_value
|
||||
return module(*inputs, use_cache=use_cache, output_attentions=output_attentions)
|
||||
|
||||
return custom_forward
|
||||
|
||||
outputs = torch.utils.checkpoint.checkpoint(
|
||||
create_custom_forward(block),
|
||||
hidden_states,
|
||||
alibi,
|
||||
causal_mask,
|
||||
layer_past,
|
||||
head_mask[i],
|
||||
)
|
||||
else:
|
||||
outputs = block(
|
||||
hidden_states,
|
||||
layer_past=layer_past,
|
||||
attention_mask=causal_mask,
|
||||
head_mask=head_mask[i],
|
||||
use_cache=use_cache,
|
||||
output_attentions=output_attentions,
|
||||
alibi=alibi,
|
||||
infer_state=infer_state,
|
||||
)
|
||||
|
||||
hidden_states = outputs[0]
|
||||
if use_cache is True:
|
||||
presents = presents + (outputs[1],)
|
||||
|
||||
if output_attentions:
|
||||
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
|
||||
|
||||
# Add last hidden state
|
||||
hidden_states = self.ln_f(hidden_states)
|
||||
|
||||
if output_hidden_states:
|
||||
all_hidden_states = all_hidden_states + (hidden_states,)
|
||||
|
||||
# update indices of kv cache block
|
||||
# TODO: might want to remove this part, instead, better to pass the BatchInferState from model forward,
|
||||
# and update these information in engine.generate after model foward called
|
||||
infer_state.start_loc = infer_state.start_loc + torch.arange(0, batch_size, dtype=torch.int32, device="cuda")
|
||||
infer_state.seq_len += 1
|
||||
infer_state.decode_layer_id = 0
|
||||
|
||||
if not return_dict:
|
||||
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
|
||||
|
||||
return BaseModelOutputWithPastAndCrossAttentions(
|
||||
last_hidden_state=hidden_states,
|
||||
past_key_values=presents, # should always be (None, None, ..., None)
|
||||
hidden_states=all_hidden_states,
|
||||
attentions=all_self_attentions,
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def bloom_for_causal_lm_forward(self: BloomForCausalLM,
|
||||
input_ids: Optional[torch.LongTensor] = None,
|
||||
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
head_mask: Optional[torch.Tensor] = None,
|
||||
inputs_embeds: Optional[torch.Tensor] = None,
|
||||
labels: Optional[torch.Tensor] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
infer_state: Optional[BatchInferState] = None,
|
||||
**deprecated_arguments):
|
||||
r"""
|
||||
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||||
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
||||
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
|
||||
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
|
||||
"""
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
if deprecated_arguments.pop("position_ids", False) is not False:
|
||||
# `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None`
|
||||
warnings.warn(
|
||||
"`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore"
|
||||
" passing `position_ids`.",
|
||||
FutureWarning,
|
||||
)
|
||||
if len(deprecated_arguments) > 0:
|
||||
raise ValueError(f"Got unexpected arguments: {deprecated_arguments}")
|
||||
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
transformer_outputs = BloomInferenceForwards.bloom_model_forward(self.transformer,
|
||||
input_ids,
|
||||
past_key_values=past_key_values,
|
||||
attention_mask=attention_mask,
|
||||
head_mask=head_mask,
|
||||
inputs_embeds=inputs_embeds,
|
||||
use_cache=use_cache,
|
||||
output_attentions=output_attentions,
|
||||
output_hidden_states=output_hidden_states,
|
||||
return_dict=return_dict,
|
||||
infer_state=infer_state)
|
||||
hidden_states = transformer_outputs[0]
|
||||
|
||||
lm_logits = self.lm_head(hidden_states)
|
||||
|
||||
loss = None
|
||||
if labels is not None:
|
||||
# move labels to correct device to enable model parallelism
|
||||
labels = labels.to(lm_logits.device)
|
||||
# Shift so that tokens < n predict n
|
||||
shift_logits = lm_logits[..., :-1, :].contiguous()
|
||||
shift_labels = labels[..., 1:].contiguous()
|
||||
batch_size, seq_length, vocab_size = shift_logits.shape
|
||||
# Flatten the tokens
|
||||
loss_fct = CrossEntropyLoss()
|
||||
loss = loss_fct(shift_logits.view(batch_size * seq_length, vocab_size),
|
||||
shift_labels.view(batch_size * seq_length))
|
||||
|
||||
if not return_dict:
|
||||
output = (lm_logits,) + transformer_outputs[1:]
|
||||
return ((loss,) + output) if loss is not None else output
|
||||
|
||||
return CausalLMOutputWithCrossAttentions(
|
||||
loss=loss,
|
||||
logits=lm_logits,
|
||||
past_key_values=transformer_outputs.past_key_values,
|
||||
hidden_states=transformer_outputs.hidden_states,
|
||||
attentions=transformer_outputs.attentions,
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def bloom_for_causal_lm_prepare_inputs_for_generation(
|
||||
self: BloomForCausalLM,
|
||||
input_ids: torch.LongTensor,
|
||||
past_key_values: Optional[torch.Tensor] = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
inputs_embeds: Optional[torch.Tensor] = None,
|
||||
**kwargs,
|
||||
) -> dict:
|
||||
# only last token for input_ids if past is not None
|
||||
if past_key_values:
|
||||
input_ids = input_ids[:, -1].unsqueeze(-1)
|
||||
|
||||
# NOTE we won't use past key values here
|
||||
# the cache may be in the stardard format (e.g. in contrastive search), convert to bloom's format if needed
|
||||
# if past_key_values[0][0].shape[0] == input_ids.shape[0]:
|
||||
# past_key_values = self._convert_to_bloom_cache(past_key_values)
|
||||
|
||||
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
||||
if inputs_embeds is not None and past_key_values is None:
|
||||
model_inputs = {"inputs_embeds": inputs_embeds}
|
||||
else:
|
||||
model_inputs = {"input_ids": input_ids}
|
||||
|
||||
model_inputs.update({
|
||||
"past_key_values": past_key_values,
|
||||
"use_cache": kwargs.get("use_cache"),
|
||||
"attention_mask": attention_mask,
|
||||
})
|
||||
return model_inputs
|
||||
|
||||
# replace decoder layer forward:
|
||||
# used to replace BloomBlock.forward
|
||||
@staticmethod
|
||||
def bloom_block_forward(
|
||||
self: BloomBlock,
|
||||
hidden_states: torch.Tensor,
|
||||
alibi: torch.Tensor,
|
||||
attention_mask: torch.Tensor,
|
||||
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
||||
head_mask: Optional[torch.Tensor] = None,
|
||||
use_cache: bool = False,
|
||||
output_attentions: bool = False,
|
||||
infer_state: Optional[BatchInferState] = None,
|
||||
):
|
||||
# hidden_states: [batch_size, seq_length, hidden_size]
|
||||
|
||||
# Layer norm at the beginning of the transformer layer.
|
||||
layernorm_output = self.input_layernorm(hidden_states)
|
||||
|
||||
# Layer norm post the self attention.
|
||||
if self.apply_residual_connection_post_layernorm:
|
||||
residual = layernorm_output
|
||||
else:
|
||||
residual = hidden_states
|
||||
|
||||
# Self attention.
|
||||
attn_outputs = self.self_attention(
|
||||
layernorm_output,
|
||||
residual,
|
||||
layer_past=layer_past,
|
||||
attention_mask=attention_mask,
|
||||
alibi=alibi,
|
||||
head_mask=head_mask,
|
||||
use_cache=use_cache,
|
||||
output_attentions=output_attentions,
|
||||
infer_state=infer_state,
|
||||
)
|
||||
|
||||
attention_output = attn_outputs[0]
|
||||
|
||||
outputs = attn_outputs[1:]
|
||||
|
||||
layernorm_output = self.post_attention_layernorm(attention_output)
|
||||
|
||||
# Get residual
|
||||
if self.apply_residual_connection_post_layernorm:
|
||||
residual = layernorm_output
|
||||
else:
|
||||
residual = attention_output
|
||||
|
||||
# MLP.
|
||||
output = self.mlp(layernorm_output, residual)
|
||||
|
||||
if use_cache:
|
||||
outputs = (output,) + outputs
|
||||
else:
|
||||
outputs = (output,) + outputs[1:]
|
||||
|
||||
return outputs # hidden_states, present, attentions
|
||||
|
||||
# replace attention forward:
|
||||
# used to replace BloomAttention.forward
|
||||
@staticmethod
|
||||
def bloom_attention_forward(
|
||||
self: BloomAttention,
|
||||
hidden_states: torch.Tensor,
|
||||
residual: torch.Tensor,
|
||||
alibi: torch.Tensor,
|
||||
attention_mask: torch.Tensor,
|
||||
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
||||
head_mask: Optional[torch.Tensor] = None,
|
||||
use_cache: bool = False,
|
||||
output_attentions: bool = False,
|
||||
infer_state: Optional[BatchInferState] = None,
|
||||
):
|
||||
|
||||
fused_qkv = self.query_key_value(hidden_states) # [batch_size, seq_length, 3 x hidden_size]
|
||||
|
||||
# 3 x [batch_size, seq_length, num_heads, head_dim]
|
||||
(query_layer, key_layer, value_layer) = self._split_heads(fused_qkv)
|
||||
batch_size, q_length, H, D_HEAD = query_layer.shape
|
||||
k = key_layer.reshape(-1, H, D_HEAD) # batch_size * q_length, H, D_HEAD, q_lenth == 1
|
||||
v = value_layer.reshape(-1, H, D_HEAD) # batch_size * q_length, H, D_HEAD, q_lenth == 1
|
||||
|
||||
mem_manager = infer_state.cache_manager
|
||||
layer_id = infer_state.decode_layer_id
|
||||
|
||||
if infer_state.is_context_stage:
|
||||
# context process
|
||||
max_input_len = q_length
|
||||
b_start_loc = infer_state.start_loc
|
||||
b_seq_len = infer_state.seq_len[:batch_size]
|
||||
q = query_layer.reshape(-1, H, D_HEAD)
|
||||
|
||||
copy_kv_cache_to_dest(k, infer_state.context_mem_index, mem_manager.key_buffer[layer_id])
|
||||
copy_kv_cache_to_dest(v, infer_state.context_mem_index, mem_manager.value_buffer[layer_id])
|
||||
|
||||
# output = self.output[:batch_size*q_length, :, :]
|
||||
output = torch.empty_like(q)
|
||||
|
||||
bloom_context_attn_fwd(q, k, v, output, b_start_loc, b_seq_len, max_input_len, alibi)
|
||||
|
||||
context_layer = output.view(batch_size, q_length, H * D_HEAD)
|
||||
# record the length of past key values cache when entering the first attention layer in bloom block,
|
||||
# since we won't return past_key_value_cache right now
|
||||
if layer_id == 0: # once per model.forward
|
||||
infer_state.cache_manager.past_key_values_length = q_length # seq_len
|
||||
else:
|
||||
# query_layer = query_layer.transpose(1, 2).reshape(batch_size * self.num_heads, q_length, self.head_dim)
|
||||
# need shape: batch_size, H, D_HEAD (q_length == 1), input q shape : (batch_size, q_length(1), H, D_HEAD)
|
||||
assert q_length == 1, "for non-context process, we only support q_length == 1"
|
||||
q = query_layer.reshape(-1, H, D_HEAD)
|
||||
|
||||
if infer_state.decode_is_contiguous:
|
||||
# if decode is contiguous, then we copy to key cache and value cache in cache manager directly
|
||||
cache_k = infer_state.cache_manager.key_buffer[layer_id][
|
||||
infer_state.decode_mem_start:infer_state.decode_mem_end, :, :]
|
||||
cache_v = infer_state.cache_manager.value_buffer[layer_id][
|
||||
infer_state.decode_mem_start:infer_state.decode_mem_end, :, :]
|
||||
cache_k.copy_(k)
|
||||
cache_v.copy_(v)
|
||||
else:
|
||||
# if decode is not contiguous, use triton kernel to copy key and value cache
|
||||
# k, v shape: [batch_size, num_heads, head_dim/embed_size_per_head]
|
||||
copy_kv_cache_to_dest(k, infer_state.decode_mem_index, mem_manager.key_buffer[layer_id])
|
||||
copy_kv_cache_to_dest(v, infer_state.decode_mem_index, mem_manager.value_buffer[layer_id])
|
||||
|
||||
b_start_loc = infer_state.start_loc[:batch_size]
|
||||
b_loc = infer_state.block_loc[:batch_size, :]
|
||||
b_seq_len = infer_state.seq_len[:batch_size]
|
||||
max_len_in_batch = mem_manager.past_key_values_length + q_length
|
||||
output = torch.empty_like(q)
|
||||
token_attention_fwd(q, mem_manager.key_buffer[layer_id], mem_manager.value_buffer[layer_id], output, b_loc,
|
||||
b_start_loc, b_seq_len, max_len_in_batch, alibi)
|
||||
|
||||
context_layer = output.view(batch_size, q_length, H * D_HEAD)
|
||||
|
||||
if layer_id == 0: # once per model.forward
|
||||
assert infer_state.cache_manager.past_key_values_length != 0
|
||||
infer_state.cache_manager.past_key_values_length += q_length # += 1
|
||||
|
||||
# update layer id
|
||||
infer_state.decode_layer_id += 1
|
||||
|
||||
# NOTE: always set present as none for now, instead of returning past key value to the next decoding,
|
||||
# we create the past key value pair from the cache manager
|
||||
present = None
|
||||
|
||||
# aggregate results across tp ranks. See here: https://github.com/pytorch/pytorch/issues/76232
|
||||
if self.pretraining_tp > 1 and self.slow_but_exact:
|
||||
slices = self.hidden_size / self.pretraining_tp
|
||||
output_tensor = torch.zeros_like(context_layer)
|
||||
for i in range(self.pretraining_tp):
|
||||
output_tensor = output_tensor + F.linear(
|
||||
context_layer[:, :, int(i * slices):int((i + 1) * slices)],
|
||||
self.dense.weight[:, int(i * slices):int((i + 1) * slices)],
|
||||
)
|
||||
else:
|
||||
output_tensor = self.dense(context_layer)
|
||||
|
||||
# dropout is not required here during inference
|
||||
output_tensor = residual + output_tensor
|
||||
|
||||
outputs = (output_tensor, present)
|
||||
assert output_attentions is False, "we do not support output_attentions at this time"
|
||||
|
||||
return outputs
|
|
@ -0,0 +1,4 @@
|
|||
from .bloom import BloomModelInferPolicy
|
||||
from .llama import LlamaModelInferPolicy
|
||||
|
||||
__all__ = ['BloomModelInferPolicy', 'LlamaModelInferPolicy']
|
|
@ -0,0 +1,44 @@
|
|||
from colossalai.shardformer.policies.bloom import BloomForCausalLMPolicy
|
||||
|
||||
from ..modeling.bloom import BloomInferenceForwards
|
||||
|
||||
|
||||
class BloomModelInferPolicy(BloomForCausalLMPolicy):
|
||||
|
||||
def __init__(self) -> None:
|
||||
super().__init__()
|
||||
|
||||
def module_policy(self):
|
||||
from transformers.models.bloom.modeling_bloom import BloomAttention, BloomBlock, BloomForCausalLM, BloomModel
|
||||
policy = super().module_policy()
|
||||
# NOTE set inference mode to shard config
|
||||
self.shard_config._infer()
|
||||
|
||||
if self.shard_config.enable_tensor_parallelism:
|
||||
|
||||
method_replacement = {
|
||||
'forward':
|
||||
BloomInferenceForwards.bloom_for_causal_lm_forward,
|
||||
'prepare_inputs_for_generation':
|
||||
BloomInferenceForwards.bloom_for_causal_lm_prepare_inputs_for_generation
|
||||
}
|
||||
self.append_or_create_method_replacement(description=method_replacement,
|
||||
policy=policy,
|
||||
target_key=BloomForCausalLM)
|
||||
|
||||
method_replacement = {'forward': BloomInferenceForwards.bloom_model_forward}
|
||||
self.append_or_create_method_replacement(description=method_replacement,
|
||||
policy=policy,
|
||||
target_key=BloomModel)
|
||||
|
||||
method_replacement = {'forward': BloomInferenceForwards.bloom_block_forward}
|
||||
self.append_or_create_method_replacement(description=method_replacement,
|
||||
policy=policy,
|
||||
target_key=BloomBlock)
|
||||
|
||||
method_replacement = {'forward': BloomInferenceForwards.bloom_attention_forward}
|
||||
self.append_or_create_method_replacement(description=method_replacement,
|
||||
policy=policy,
|
||||
target_key=BloomAttention)
|
||||
|
||||
return policy
|
|
@ -4,6 +4,7 @@ from colossalai.shardformer.policies.llama import LlamaForCausalLMPolicy
|
|||
|
||||
from ..modeling.llama import LlamaInferenceForwards
|
||||
|
||||
|
||||
class LlamaModelInferPolicy(LlamaForCausalLMPolicy):
|
||||
|
||||
def __init__(self) -> None:
|
||||
|
@ -26,10 +27,14 @@ class LlamaModelInferPolicy(LlamaForCausalLMPolicy):
|
|||
|
||||
infer_forward = LlamaInferenceForwards.llama_decoder_layer_forward
|
||||
method_replacement = {'forward': partial(infer_forward)}
|
||||
self.append_or_create_method_replacement(description=method_replacement, policy=policy, target_key=LlamaDecoderLayer)
|
||||
self.append_or_create_method_replacement(description=method_replacement,
|
||||
policy=policy,
|
||||
target_key=LlamaDecoderLayer)
|
||||
|
||||
infer_forward = LlamaInferenceForwards.llama_flash_attn_kvcache_forward
|
||||
method_replacement = {'forward': partial(infer_forward)}
|
||||
self.append_or_create_method_replacement(description=method_replacement, policy=policy, target_key=LlamaAttention)
|
||||
self.append_or_create_method_replacement(description=method_replacement,
|
||||
policy=policy,
|
||||
target_key=LlamaAttention)
|
||||
|
||||
return policy
|
|
@ -1,3 +0,0 @@
|
|||
from .llama import LlamaModelInferPolicy
|
||||
|
||||
__all__ = ['LlamaModelInferPolicy']
|
|
@ -137,6 +137,11 @@ _INFER_POLICY_LIST = {
|
|||
PolicyLocation(file_name="llama", class_name="LlamaModelInferPolicy"),
|
||||
"transformers.models.llama.modeling_llama.LlamaForCausalLM":
|
||||
PolicyLocation(file_name="llama", class_name="LlamaModelInferPolicy"),
|
||||
# Bloom
|
||||
"transformers.models.bloom.modeling_bloom.BloomModel":
|
||||
PolicyLocation(file_name="bloom", class_name="BloomModelInferPolicy"),
|
||||
"transformers.models.bloom.modeling_bloom.BloomForCausalLM":
|
||||
PolicyLocation(file_name="bloom", class_name="BloomModelInferPolicy"),
|
||||
}
|
||||
|
||||
|
||||
|
@ -144,9 +149,8 @@ def import_policy(policy_location: PolicyLocation, inference_only: Optional[bool
|
|||
"""
|
||||
Dynamically import a Policy class based on the policy location.
|
||||
"""
|
||||
|
||||
if inference_only:
|
||||
module_name = f"colossalai.inference.tensor_parallel.pollcies.{policy_location.file_name}"
|
||||
module_name = f"colossalai.inference.tensor_parallel.policies.{policy_location.file_name}"
|
||||
else:
|
||||
module_name = f"colossalai.shardformer.policies.{policy_location.file_name}"
|
||||
module = importlib.import_module(module_name)
|
||||
|
|
|
@ -0,0 +1,60 @@
|
|||
import pytest
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer, BloomForCausalLM
|
||||
|
||||
import colossalai
|
||||
from colossalai.inference.tensor_parallel import TPInferEngine
|
||||
from colossalai.logging import disable_existing_loggers
|
||||
from colossalai.shardformer import ShardConfig, ShardFormer
|
||||
from colossalai.testing import clear_cache_before_run, rerun_if_address_is_in_use, spawn
|
||||
|
||||
TP_SIZE = 2
|
||||
MAX_BATCH_SIZE = 4
|
||||
MAX_INPUT_LEN = 16
|
||||
MAX_OUTPUT_LEN = 32
|
||||
|
||||
|
||||
def run():
|
||||
|
||||
model_path = "/data3/data/model_eval_for_commerical_use/phoenix-inst-chat-7b"
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
||||
tokenizer.pad_token = tokenizer.eos_token
|
||||
|
||||
text = "Introduce some landmarks in Beijing"
|
||||
input_ids = tokenizer.batch_encode_plus([text], return_tensors='pt')
|
||||
|
||||
model = BloomForCausalLM.from_pretrained(model_path, pad_token_id=tokenizer.eos_token_id)
|
||||
model = model.half()
|
||||
model.to(torch.cuda.current_device())
|
||||
|
||||
shard_config = ShardConfig(enable_tensor_parallelism=True, inference_only=True)
|
||||
shardformer = ShardFormer(shard_config=shard_config)
|
||||
|
||||
infer_engine = TPInferEngine(model, MAX_BATCH_SIZE, MAX_INPUT_LEN, MAX_OUTPUT_LEN)
|
||||
infer_engine.prepare_with_shard_config(shard_config=shard_config)
|
||||
infer_engine.shard_model_by(shardformer)
|
||||
|
||||
generate_kwargs = dict(do_sample=False)
|
||||
outputs = infer_engine.generate(input_ids, generate_kwargs)
|
||||
|
||||
if not dist.is_initialized() or dist.get_rank() == 0:
|
||||
output_text = tokenizer.decode(outputs[0])
|
||||
print(output_text)
|
||||
|
||||
|
||||
def check_engine(rank, world_size, port):
|
||||
disable_existing_loggers()
|
||||
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
run()
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
@rerun_if_address_is_in_use()
|
||||
@clear_cache_before_run()
|
||||
def test_engine_infer():
|
||||
spawn(check_engine, TP_SIZE)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_engine_infer()
|
Loading…
Reference in New Issue