|
|
|
@ -0,0 +1,559 @@
|
|
|
|
|
import math |
|
|
|
|
import warnings |
|
|
|
|
from typing import List, Optional, Tuple, Union |
|
|
|
|
|
|
|
|
|
import torch |
|
|
|
|
import torch.distributed as dist |
|
|
|
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss |
|
|
|
|
from torch.nn import functional as F |
|
|
|
|
from transformers.models.bloom.modeling_bloom import ( |
|
|
|
|
BaseModelOutputWithPastAndCrossAttentions, |
|
|
|
|
BloomAttention, |
|
|
|
|
BloomBlock, |
|
|
|
|
BloomForCausalLM, |
|
|
|
|
BloomModel, |
|
|
|
|
CausalLMOutputWithCrossAttentions, |
|
|
|
|
) |
|
|
|
|
from transformers.utils import logging |
|
|
|
|
|
|
|
|
|
from colossalai.inference.tensor_parallel.batch_infer_state import BatchInferState |
|
|
|
|
from colossalai.kernel.triton.context_attention import bloom_context_attn_fwd |
|
|
|
|
from colossalai.kernel.triton.copy_kv_cache_dest import copy_kv_cache_to_dest |
|
|
|
|
from colossalai.kernel.triton.token_attention_kernel import token_attention_fwd |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def generate_alibi(n_head, dtype=torch.float16): |
|
|
|
|
""" |
|
|
|
|
This method is originally the `build_alibi_tensor` function |
|
|
|
|
in `transformers/models/bloom/modeling_bloom.py` |
|
|
|
|
of the huggingface/transformers GitHub repository. |
|
|
|
|
|
|
|
|
|
Copyright 2023 ModelTC Team |
|
|
|
|
Copyright 2022 HuggingFace Inc. team and BigScience workshop |
|
|
|
|
|
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License"); |
|
|
|
|
you may not use this file except in compliance with the License. |
|
|
|
|
You may obtain a copy of the License at |
|
|
|
|
|
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0 |
|
|
|
|
|
|
|
|
|
Unless required by applicable law or agreed to in writing, software |
|
|
|
|
distributed under the License is distributed on an "AS IS" BASIS, |
|
|
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
|
|
|
See the License for the specific language governing permissions and |
|
|
|
|
limitations under the License. |
|
|
|
|
""" |
|
|
|
|
|
|
|
|
|
def get_slopes(n): |
|
|
|
|
|
|
|
|
|
def get_slopes_power_of_2(n): |
|
|
|
|
start = 2**(-(2**-(math.log2(n) - 3))) |
|
|
|
|
ratio = start |
|
|
|
|
return [start * ratio**i for i in range(n)] |
|
|
|
|
|
|
|
|
|
if math.log2(n).is_integer(): |
|
|
|
|
return get_slopes_power_of_2(n) |
|
|
|
|
else: |
|
|
|
|
closest_power_of_2 = 2**math.floor(math.log2(n)) |
|
|
|
|
return (get_slopes_power_of_2(closest_power_of_2) + |
|
|
|
|
get_slopes(2 * closest_power_of_2)[0::2][:n - closest_power_of_2]) |
|
|
|
|
|
|
|
|
|
slopes = torch.Tensor(get_slopes(n_head)) |
|
|
|
|
head_alibi = slopes.to(dtype) |
|
|
|
|
return head_alibi # 1 * num_heads |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def generate_alibi_2(n_head, dtype=torch.float16): |
|
|
|
|
|
|
|
|
|
def get_slopes_power_of_2(n): |
|
|
|
|
start = 2**(-(2**-(math.log2(n) - 3))) |
|
|
|
|
return [start * start**i for i in range(n)] |
|
|
|
|
|
|
|
|
|
def get_slopes(n): |
|
|
|
|
if math.log2(n).is_integer(): |
|
|
|
|
return get_slopes_power_of_2(n) |
|
|
|
|
else: |
|
|
|
|
closest_power_of_2 = 2**math.floor(math.log2(n)) |
|
|
|
|
slopes_power_of_2 = get_slopes_power_of_2(closest_power_of_2) |
|
|
|
|
slopes_double = get_slopes(2 * closest_power_of_2) |
|
|
|
|
slopes_combined = slopes_power_of_2 + slopes_double[0::2][:n - closest_power_of_2] |
|
|
|
|
return slopes_combined |
|
|
|
|
|
|
|
|
|
slopes = torch.tensor(get_slopes(n_head), dtype=dtype) |
|
|
|
|
return slopes |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class BloomInferenceForwards: |
|
|
|
|
""" |
|
|
|
|
This class serves a micro library for bloom inference forwards |
|
|
|
|
""" |
|
|
|
|
|
|
|
|
|
@staticmethod |
|
|
|
|
def bloom_model_forward( |
|
|
|
|
self: BloomModel, |
|
|
|
|
input_ids: Optional[torch.LongTensor] = None, |
|
|
|
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, |
|
|
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
|
|
head_mask: Optional[torch.LongTensor] = None, |
|
|
|
|
inputs_embeds: Optional[torch.LongTensor] = None, |
|
|
|
|
use_cache: Optional[bool] = None, |
|
|
|
|
output_attentions: Optional[bool] = None, |
|
|
|
|
output_hidden_states: Optional[bool] = None, |
|
|
|
|
return_dict: Optional[bool] = None, |
|
|
|
|
infer_state: Optional[BatchInferState] = None, |
|
|
|
|
**deprecated_arguments, |
|
|
|
|
) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPastAndCrossAttentions]: |
|
|
|
|
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
|
|
|
|
if deprecated_arguments.pop("position_ids", False) is not False: |
|
|
|
|
# `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None` |
|
|
|
|
warnings.warn( |
|
|
|
|
"`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore" |
|
|
|
|
" passing `position_ids`.", |
|
|
|
|
FutureWarning, |
|
|
|
|
) |
|
|
|
|
if len(deprecated_arguments) > 0: |
|
|
|
|
raise ValueError(f"Got unexpected arguments: {deprecated_arguments}") |
|
|
|
|
|
|
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
|
|
|
output_hidden_states = (output_hidden_states |
|
|
|
|
if output_hidden_states is not None else self.config.output_hidden_states) |
|
|
|
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
|
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
|
|
|
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") |
|
|
|
|
elif input_ids is not None: |
|
|
|
|
batch_size, seq_length = input_ids.shape |
|
|
|
|
elif inputs_embeds is not None: |
|
|
|
|
batch_size, seq_length, _ = inputs_embeds.shape |
|
|
|
|
else: |
|
|
|
|
raise ValueError("You have to specify either input_ids or inputs_embeds") |
|
|
|
|
|
|
|
|
|
# still need to keep past_key_values to fit original forward flow |
|
|
|
|
if past_key_values is None: |
|
|
|
|
past_key_values = tuple([None] * len(self.h)) |
|
|
|
|
|
|
|
|
|
# Prepare head mask if needed |
|
|
|
|
# 1.0 in head_mask indicate we keep the head |
|
|
|
|
# attention_probs has shape batch_size x num_heads x N x N |
|
|
|
|
# head_mask has shape n_layer x batch x num_heads x N x N |
|
|
|
|
head_mask = self.get_head_mask(head_mask, self.config.n_layer) |
|
|
|
|
|
|
|
|
|
if inputs_embeds is None: |
|
|
|
|
inputs_embeds = self.word_embeddings(input_ids) |
|
|
|
|
|
|
|
|
|
hidden_states = self.word_embeddings_layernorm(inputs_embeds) |
|
|
|
|
|
|
|
|
|
presents = () if use_cache else None |
|
|
|
|
all_self_attentions = () if output_attentions else None |
|
|
|
|
all_hidden_states = () if output_hidden_states else None |
|
|
|
|
|
|
|
|
|
if self.gradient_checkpointing and self.training: |
|
|
|
|
if use_cache: |
|
|
|
|
logger.warning_once( |
|
|
|
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...") |
|
|
|
|
use_cache = False |
|
|
|
|
|
|
|
|
|
# NOTE determine if BatchInferState is passed in via arg |
|
|
|
|
# if not, get the attr binded to the model |
|
|
|
|
# We might wantto remove setattr later |
|
|
|
|
if infer_state is None: |
|
|
|
|
assert hasattr(self, 'infer_state') |
|
|
|
|
infer_state = self.infer_state |
|
|
|
|
|
|
|
|
|
# Compute alibi tensor: check build_alibi_tensor documentation |
|
|
|
|
seq_length_with_past = seq_length |
|
|
|
|
past_key_values_length = 0 |
|
|
|
|
# if self.cache_manager.past_key_values_length > 0: |
|
|
|
|
if infer_state.cache_manager.past_key_values_length > 0: |
|
|
|
|
# update the past key values length in cache manager, |
|
|
|
|
# TODO use BatchInferState.past_key_values_length instead the one in cache manager |
|
|
|
|
past_key_values_length = infer_state.cache_manager.past_key_values_length |
|
|
|
|
seq_length_with_past = seq_length_with_past + past_key_values_length |
|
|
|
|
|
|
|
|
|
# infer_state.cache_manager = self.cache_manager |
|
|
|
|
|
|
|
|
|
if use_cache and seq_length != 1: |
|
|
|
|
# prefill stage |
|
|
|
|
infer_state.is_context_stage = True # set prefill stage, notify attention layer |
|
|
|
|
infer_state.context_mem_index = infer_state.cache_manager.alloc(infer_state.total_token_num) |
|
|
|
|
BatchInferState.init_block_loc(infer_state.block_loc, infer_state.seq_len, seq_length, |
|
|
|
|
infer_state.context_mem_index) |
|
|
|
|
else: |
|
|
|
|
infer_state.is_context_stage = False |
|
|
|
|
alloc_mem = infer_state.cache_manager.alloc_contiguous(batch_size) |
|
|
|
|
if alloc_mem is not None: |
|
|
|
|
infer_state.decode_is_contiguous = True |
|
|
|
|
infer_state.decode_mem_index = alloc_mem[0] |
|
|
|
|
infer_state.decode_mem_start = alloc_mem[1] |
|
|
|
|
infer_state.decode_mem_end = alloc_mem[2] |
|
|
|
|
infer_state.block_loc[:, seq_length_with_past - 1] = infer_state.decode_mem_index |
|
|
|
|
else: |
|
|
|
|
print(f" *** Encountered allocation non-contiguous") |
|
|
|
|
print( |
|
|
|
|
f" infer_state.cache_manager.past_key_values_length: {infer_state.cache_manager.past_key_values_length}" |
|
|
|
|
) |
|
|
|
|
infer_state.decode_is_contiguous = False |
|
|
|
|
alloc_mem = infer_state.cache_manager.alloc(batch_size) |
|
|
|
|
infer_state.decode_mem_index = alloc_mem |
|
|
|
|
# infer_state.decode_key_buffer = torch.empty((batch_size, self.tp_head_num_, self.head_dim_), dtype=torch.float16, device="cuda") |
|
|
|
|
# infer_state.decode_value_buffer = torch.empty((batch_size, self.tp_head_num_, self.head_dim_), dtype=torch.float16, device="cuda") |
|
|
|
|
infer_state.block_loc[:, seq_length_with_past - 1] = infer_state.decode_mem_index |
|
|
|
|
|
|
|
|
|
if attention_mask is None: |
|
|
|
|
attention_mask = torch.ones((batch_size, seq_length_with_past), device=hidden_states.device) |
|
|
|
|
else: |
|
|
|
|
attention_mask = attention_mask.to(hidden_states.device) |
|
|
|
|
|
|
|
|
|
# TODO revise: we might want to store a single 1D alibi(length is #heads) in model, |
|
|
|
|
# or store to BatchInferState to prevent re-calculating |
|
|
|
|
# When we have multiple process group (e.g. dp together with tp), we need to pass the pg to here |
|
|
|
|
# alibi = generate_alibi(self.num_heads).contiguous().cuda() |
|
|
|
|
tp_size = dist.get_world_size() |
|
|
|
|
curr_tp_rank = dist.get_rank() |
|
|
|
|
alibi = generate_alibi(self.num_heads * tp_size).contiguous()[curr_tp_rank * self.num_heads:(curr_tp_rank + 1) * |
|
|
|
|
self.num_heads].cuda() |
|
|
|
|
causal_mask = self._prepare_attn_mask( |
|
|
|
|
attention_mask, |
|
|
|
|
input_shape=(batch_size, seq_length), |
|
|
|
|
past_key_values_length=past_key_values_length, |
|
|
|
|
) |
|
|
|
|
|
|
|
|
|
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)): |
|
|
|
|
if output_hidden_states: |
|
|
|
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
|
|
|
|
|
|
if self.gradient_checkpointing and self.training: |
|
|
|
|
# FIXME: currently our KV cache manager does not handle this condition |
|
|
|
|
def create_custom_forward(module): |
|
|
|
|
|
|
|
|
|
def custom_forward(*inputs): |
|
|
|
|
# None for past_key_value |
|
|
|
|
return module(*inputs, use_cache=use_cache, output_attentions=output_attentions) |
|
|
|
|
|
|
|
|
|
return custom_forward |
|
|
|
|
|
|
|
|
|
outputs = torch.utils.checkpoint.checkpoint( |
|
|
|
|
create_custom_forward(block), |
|
|
|
|
hidden_states, |
|
|
|
|
alibi, |
|
|
|
|
causal_mask, |
|
|
|
|
layer_past, |
|
|
|
|
head_mask[i], |
|
|
|
|
) |
|
|
|
|
else: |
|
|
|
|
outputs = block( |
|
|
|
|
hidden_states, |
|
|
|
|
layer_past=layer_past, |
|
|
|
|
attention_mask=causal_mask, |
|
|
|
|
head_mask=head_mask[i], |
|
|
|
|
use_cache=use_cache, |
|
|
|
|
output_attentions=output_attentions, |
|
|
|
|
alibi=alibi, |
|
|
|
|
infer_state=infer_state, |
|
|
|
|
) |
|
|
|
|
|
|
|
|
|
hidden_states = outputs[0] |
|
|
|
|
if use_cache is True: |
|
|
|
|
presents = presents + (outputs[1],) |
|
|
|
|
|
|
|
|
|
if output_attentions: |
|
|
|
|
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],) |
|
|
|
|
|
|
|
|
|
# Add last hidden state |
|
|
|
|
hidden_states = self.ln_f(hidden_states) |
|
|
|
|
|
|
|
|
|
if output_hidden_states: |
|
|
|
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
|
|
|
|
|
|
# update indices of kv cache block |
|
|
|
|
# TODO: might want to remove this part, instead, better to pass the BatchInferState from model forward, |
|
|
|
|
# and update these information in engine.generate after model foward called |
|
|
|
|
infer_state.start_loc = infer_state.start_loc + torch.arange(0, batch_size, dtype=torch.int32, device="cuda") |
|
|
|
|
infer_state.seq_len += 1 |
|
|
|
|
infer_state.decode_layer_id = 0 |
|
|
|
|
|
|
|
|
|
if not return_dict: |
|
|
|
|
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None) |
|
|
|
|
|
|
|
|
|
return BaseModelOutputWithPastAndCrossAttentions( |
|
|
|
|
last_hidden_state=hidden_states, |
|
|
|
|
past_key_values=presents, # should always be (None, None, ..., None) |
|
|
|
|
hidden_states=all_hidden_states, |
|
|
|
|
attentions=all_self_attentions, |
|
|
|
|
) |
|
|
|
|
|
|
|
|
|
@staticmethod |
|
|
|
|
def bloom_for_causal_lm_forward(self: BloomForCausalLM, |
|
|
|
|
input_ids: Optional[torch.LongTensor] = None, |
|
|
|
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, |
|
|
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
|
|
head_mask: Optional[torch.Tensor] = None, |
|
|
|
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
|
|
|
labels: Optional[torch.Tensor] = None, |
|
|
|
|
use_cache: Optional[bool] = None, |
|
|
|
|
output_attentions: Optional[bool] = None, |
|
|
|
|
output_hidden_states: Optional[bool] = None, |
|
|
|
|
return_dict: Optional[bool] = None, |
|
|
|
|
infer_state: Optional[BatchInferState] = None, |
|
|
|
|
**deprecated_arguments): |
|
|
|
|
r""" |
|
|
|
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
|
|
|
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set |
|
|
|
|
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` |
|
|
|
|
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` |
|
|
|
|
""" |
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
|
|
|
|
if deprecated_arguments.pop("position_ids", False) is not False: |
|
|
|
|
# `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None` |
|
|
|
|
warnings.warn( |
|
|
|
|
"`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore" |
|
|
|
|
" passing `position_ids`.", |
|
|
|
|
FutureWarning, |
|
|
|
|
) |
|
|
|
|
if len(deprecated_arguments) > 0: |
|
|
|
|
raise ValueError(f"Got unexpected arguments: {deprecated_arguments}") |
|
|
|
|
|
|
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
|
|
|
|
transformer_outputs = BloomInferenceForwards.bloom_model_forward(self.transformer, |
|
|
|
|
input_ids, |
|
|
|
|
past_key_values=past_key_values, |
|
|
|
|
attention_mask=attention_mask, |
|
|
|
|
head_mask=head_mask, |
|
|
|
|
inputs_embeds=inputs_embeds, |
|
|
|
|
use_cache=use_cache, |
|
|
|
|
output_attentions=output_attentions, |
|
|
|
|
output_hidden_states=output_hidden_states, |
|
|
|
|
return_dict=return_dict, |
|
|
|
|
infer_state=infer_state) |
|
|
|
|
hidden_states = transformer_outputs[0] |
|
|
|
|
|
|
|
|
|
lm_logits = self.lm_head(hidden_states) |
|
|
|
|
|
|
|
|
|
loss = None |
|
|
|
|
if labels is not None: |
|
|
|
|
# move labels to correct device to enable model parallelism |
|
|
|
|
labels = labels.to(lm_logits.device) |
|
|
|
|
# Shift so that tokens < n predict n |
|
|
|
|
shift_logits = lm_logits[..., :-1, :].contiguous() |
|
|
|
|
shift_labels = labels[..., 1:].contiguous() |
|
|
|
|
batch_size, seq_length, vocab_size = shift_logits.shape |
|
|
|
|
# Flatten the tokens |
|
|
|
|
loss_fct = CrossEntropyLoss() |
|
|
|
|
loss = loss_fct(shift_logits.view(batch_size * seq_length, vocab_size), |
|
|
|
|
shift_labels.view(batch_size * seq_length)) |
|
|
|
|
|
|
|
|
|
if not return_dict: |
|
|
|
|
output = (lm_logits,) + transformer_outputs[1:] |
|
|
|
|
return ((loss,) + output) if loss is not None else output |
|
|
|
|
|
|
|
|
|
return CausalLMOutputWithCrossAttentions( |
|
|
|
|
loss=loss, |
|
|
|
|
logits=lm_logits, |
|
|
|
|
past_key_values=transformer_outputs.past_key_values, |
|
|
|
|
hidden_states=transformer_outputs.hidden_states, |
|
|
|
|
attentions=transformer_outputs.attentions, |
|
|
|
|
) |
|
|
|
|
|
|
|
|
|
@staticmethod |
|
|
|
|
def bloom_for_causal_lm_prepare_inputs_for_generation( |
|
|
|
|
self: BloomForCausalLM, |
|
|
|
|
input_ids: torch.LongTensor, |
|
|
|
|
past_key_values: Optional[torch.Tensor] = None, |
|
|
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
|
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
|
|
|
**kwargs, |
|
|
|
|
) -> dict: |
|
|
|
|
# only last token for input_ids if past is not None |
|
|
|
|
if past_key_values: |
|
|
|
|
input_ids = input_ids[:, -1].unsqueeze(-1) |
|
|
|
|
|
|
|
|
|
# NOTE we won't use past key values here |
|
|
|
|
# the cache may be in the stardard format (e.g. in contrastive search), convert to bloom's format if needed |
|
|
|
|
# if past_key_values[0][0].shape[0] == input_ids.shape[0]: |
|
|
|
|
# past_key_values = self._convert_to_bloom_cache(past_key_values) |
|
|
|
|
|
|
|
|
|
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step |
|
|
|
|
if inputs_embeds is not None and past_key_values is None: |
|
|
|
|
model_inputs = {"inputs_embeds": inputs_embeds} |
|
|
|
|
else: |
|
|
|
|
model_inputs = {"input_ids": input_ids} |
|
|
|
|
|
|
|
|
|
model_inputs.update({ |
|
|
|
|
"past_key_values": past_key_values, |
|
|
|
|
"use_cache": kwargs.get("use_cache"), |
|
|
|
|
"attention_mask": attention_mask, |
|
|
|
|
}) |
|
|
|
|
return model_inputs |
|
|
|
|
|
|
|
|
|
# replace decoder layer forward: |
|
|
|
|
# used to replace BloomBlock.forward |
|
|
|
|
@staticmethod |
|
|
|
|
def bloom_block_forward( |
|
|
|
|
self: BloomBlock, |
|
|
|
|
hidden_states: torch.Tensor, |
|
|
|
|
alibi: torch.Tensor, |
|
|
|
|
attention_mask: torch.Tensor, |
|
|
|
|
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, |
|
|
|
|
head_mask: Optional[torch.Tensor] = None, |
|
|
|
|
use_cache: bool = False, |
|
|
|
|
output_attentions: bool = False, |
|
|
|
|
infer_state: Optional[BatchInferState] = None, |
|
|
|
|
): |
|
|
|
|
# hidden_states: [batch_size, seq_length, hidden_size] |
|
|
|
|
|
|
|
|
|
# Layer norm at the beginning of the transformer layer. |
|
|
|
|
layernorm_output = self.input_layernorm(hidden_states) |
|
|
|
|
|
|
|
|
|
# Layer norm post the self attention. |
|
|
|
|
if self.apply_residual_connection_post_layernorm: |
|
|
|
|
residual = layernorm_output |
|
|
|
|
else: |
|
|
|
|
residual = hidden_states |
|
|
|
|
|
|
|
|
|
# Self attention. |
|
|
|
|
attn_outputs = self.self_attention( |
|
|
|
|
layernorm_output, |
|
|
|
|
residual, |
|
|
|
|
layer_past=layer_past, |
|
|
|
|
attention_mask=attention_mask, |
|
|
|
|
alibi=alibi, |
|
|
|
|
head_mask=head_mask, |
|
|
|
|
use_cache=use_cache, |
|
|
|
|
output_attentions=output_attentions, |
|
|
|
|
infer_state=infer_state, |
|
|
|
|
) |
|
|
|
|
|
|
|
|
|
attention_output = attn_outputs[0] |
|
|
|
|
|
|
|
|
|
outputs = attn_outputs[1:] |
|
|
|
|
|
|
|
|
|
layernorm_output = self.post_attention_layernorm(attention_output) |
|
|
|
|
|
|
|
|
|
# Get residual |
|
|
|
|
if self.apply_residual_connection_post_layernorm: |
|
|
|
|
residual = layernorm_output |
|
|
|
|
else: |
|
|
|
|
residual = attention_output |
|
|
|
|
|
|
|
|
|
# MLP. |
|
|
|
|
output = self.mlp(layernorm_output, residual) |
|
|
|
|
|
|
|
|
|
if use_cache: |
|
|
|
|
outputs = (output,) + outputs |
|
|
|
|
else: |
|
|
|
|
outputs = (output,) + outputs[1:] |
|
|
|
|
|
|
|
|
|
return outputs # hidden_states, present, attentions |
|
|
|
|
|
|
|
|
|
# replace attention forward: |
|
|
|
|
# used to replace BloomAttention.forward |
|
|
|
|
@staticmethod |
|
|
|
|
def bloom_attention_forward( |
|
|
|
|
self: BloomAttention, |
|
|
|
|
hidden_states: torch.Tensor, |
|
|
|
|
residual: torch.Tensor, |
|
|
|
|
alibi: torch.Tensor, |
|
|
|
|
attention_mask: torch.Tensor, |
|
|
|
|
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, |
|
|
|
|
head_mask: Optional[torch.Tensor] = None, |
|
|
|
|
use_cache: bool = False, |
|
|
|
|
output_attentions: bool = False, |
|
|
|
|
infer_state: Optional[BatchInferState] = None, |
|
|
|
|
): |
|
|
|
|
|
|
|
|
|
fused_qkv = self.query_key_value(hidden_states) # [batch_size, seq_length, 3 x hidden_size] |
|
|
|
|
|
|
|
|
|
# 3 x [batch_size, seq_length, num_heads, head_dim] |
|
|
|
|
(query_layer, key_layer, value_layer) = self._split_heads(fused_qkv) |
|
|
|
|
batch_size, q_length, H, D_HEAD = query_layer.shape |
|
|
|
|
k = key_layer.reshape(-1, H, D_HEAD) # batch_size * q_length, H, D_HEAD, q_lenth == 1 |
|
|
|
|
v = value_layer.reshape(-1, H, D_HEAD) # batch_size * q_length, H, D_HEAD, q_lenth == 1 |
|
|
|
|
|
|
|
|
|
mem_manager = infer_state.cache_manager |
|
|
|
|
layer_id = infer_state.decode_layer_id |
|
|
|
|
|
|
|
|
|
if infer_state.is_context_stage: |
|
|
|
|
# context process |
|
|
|
|
max_input_len = q_length |
|
|
|
|
b_start_loc = infer_state.start_loc |
|
|
|
|
b_seq_len = infer_state.seq_len[:batch_size] |
|
|
|
|
q = query_layer.reshape(-1, H, D_HEAD) |
|
|
|
|
|
|
|
|
|
copy_kv_cache_to_dest(k, infer_state.context_mem_index, mem_manager.key_buffer[layer_id]) |
|
|
|
|
copy_kv_cache_to_dest(v, infer_state.context_mem_index, mem_manager.value_buffer[layer_id]) |
|
|
|
|
|
|
|
|
|
# output = self.output[:batch_size*q_length, :, :] |
|
|
|
|
output = torch.empty_like(q) |
|
|
|
|
|
|
|
|
|
bloom_context_attn_fwd(q, k, v, output, b_start_loc, b_seq_len, max_input_len, alibi) |
|
|
|
|
|
|
|
|
|
context_layer = output.view(batch_size, q_length, H * D_HEAD) |
|
|
|
|
# record the length of past key values cache when entering the first attention layer in bloom block, |
|
|
|
|
# since we won't return past_key_value_cache right now |
|
|
|
|
if layer_id == 0: # once per model.forward |
|
|
|
|
infer_state.cache_manager.past_key_values_length = q_length # seq_len |
|
|
|
|
else: |
|
|
|
|
# query_layer = query_layer.transpose(1, 2).reshape(batch_size * self.num_heads, q_length, self.head_dim) |
|
|
|
|
# need shape: batch_size, H, D_HEAD (q_length == 1), input q shape : (batch_size, q_length(1), H, D_HEAD) |
|
|
|
|
assert q_length == 1, "for non-context process, we only support q_length == 1" |
|
|
|
|
q = query_layer.reshape(-1, H, D_HEAD) |
|
|
|
|
|
|
|
|
|
if infer_state.decode_is_contiguous: |
|
|
|
|
# if decode is contiguous, then we copy to key cache and value cache in cache manager directly |
|
|
|
|
cache_k = infer_state.cache_manager.key_buffer[layer_id][ |
|
|
|
|
infer_state.decode_mem_start:infer_state.decode_mem_end, :, :] |
|
|
|
|
cache_v = infer_state.cache_manager.value_buffer[layer_id][ |
|
|
|
|
infer_state.decode_mem_start:infer_state.decode_mem_end, :, :] |
|
|
|
|
cache_k.copy_(k) |
|
|
|
|
cache_v.copy_(v) |
|
|
|
|
else: |
|
|
|
|
# if decode is not contiguous, use triton kernel to copy key and value cache |
|
|
|
|
# k, v shape: [batch_size, num_heads, head_dim/embed_size_per_head] |
|
|
|
|
copy_kv_cache_to_dest(k, infer_state.decode_mem_index, mem_manager.key_buffer[layer_id]) |
|
|
|
|
copy_kv_cache_to_dest(v, infer_state.decode_mem_index, mem_manager.value_buffer[layer_id]) |
|
|
|
|
|
|
|
|
|
b_start_loc = infer_state.start_loc[:batch_size] |
|
|
|
|
b_loc = infer_state.block_loc[:batch_size, :] |
|
|
|
|
b_seq_len = infer_state.seq_len[:batch_size] |
|
|
|
|
max_len_in_batch = mem_manager.past_key_values_length + q_length |
|
|
|
|
output = torch.empty_like(q) |
|
|
|
|
token_attention_fwd(q, mem_manager.key_buffer[layer_id], mem_manager.value_buffer[layer_id], output, b_loc, |
|
|
|
|
b_start_loc, b_seq_len, max_len_in_batch, alibi) |
|
|
|
|
|
|
|
|
|
context_layer = output.view(batch_size, q_length, H * D_HEAD) |
|
|
|
|
|
|
|
|
|
if layer_id == 0: # once per model.forward |
|
|
|
|
assert infer_state.cache_manager.past_key_values_length != 0 |
|
|
|
|
infer_state.cache_manager.past_key_values_length += q_length # += 1 |
|
|
|
|
|
|
|
|
|
# update layer id |
|
|
|
|
infer_state.decode_layer_id += 1 |
|
|
|
|
|
|
|
|
|
# NOTE: always set present as none for now, instead of returning past key value to the next decoding, |
|
|
|
|
# we create the past key value pair from the cache manager |
|
|
|
|
present = None |
|
|
|
|
|
|
|
|
|
# aggregate results across tp ranks. See here: https://github.com/pytorch/pytorch/issues/76232 |
|
|
|
|
if self.pretraining_tp > 1 and self.slow_but_exact: |
|
|
|
|
slices = self.hidden_size / self.pretraining_tp |
|
|
|
|
output_tensor = torch.zeros_like(context_layer) |
|
|
|
|
for i in range(self.pretraining_tp): |
|
|
|
|
output_tensor = output_tensor + F.linear( |
|
|
|
|
context_layer[:, :, int(i * slices):int((i + 1) * slices)], |
|
|
|
|
self.dense.weight[:, int(i * slices):int((i + 1) * slices)], |
|
|
|
|
) |
|
|
|
|
else: |
|
|
|
|
output_tensor = self.dense(context_layer) |
|
|
|
|
|
|
|
|
|
# dropout is not required here during inference |
|
|
|
|
output_tensor = residual + output_tensor |
|
|
|
|
|
|
|
|
|
outputs = (output_tensor, present) |
|
|
|
|
assert output_attentions is False, "we do not support output_attentions at this time" |
|
|
|
|
|
|
|
|
|
return outputs |