mirror of https://github.com/hpcaitech/ColossalAI
fix format (#563)
parent
ce8a3eae5b
commit
1762ba14ab
|
@ -9,32 +9,29 @@
|
|||
// Stringstream is a big hammer, but I want to rely on operator<< for dtype.
|
||||
#include <sstream>
|
||||
|
||||
#include "type_shim.h"
|
||||
#include "multi_tensor_apply.cuh"
|
||||
#include "type_shim.h"
|
||||
|
||||
#define BLOCK_SIZE 512
|
||||
#define ILP 4
|
||||
|
||||
template<typename T>
|
||||
__device__ __forceinline__ bool is_aligned(T* p){
|
||||
return ((uint64_t)p) % (ILP*sizeof(T)) == 0;
|
||||
template <typename T> __device__ __forceinline__ bool is_aligned(T *p) {
|
||||
return ((uint64_t)p) % (ILP * sizeof(T)) == 0;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
__device__ __forceinline__ void load_store(T* dst, T* src, int dst_offset, int src_offset){
|
||||
typedef typename std::aligned_storage<ILP*sizeof(T), ILP*alignof(T)>::type LT;
|
||||
((LT*)dst)[dst_offset] = ((LT*)src)[src_offset];
|
||||
template <typename T>
|
||||
__device__ __forceinline__ void load_store(T *dst, T *src, int dst_offset,
|
||||
int src_offset) {
|
||||
typedef
|
||||
typename std::aligned_storage<ILP * sizeof(T), ILP * alignof(T)>::type LT;
|
||||
((LT *)dst)[dst_offset] = ((LT *)src)[src_offset];
|
||||
}
|
||||
|
||||
template<typename in_t, typename out_t>
|
||||
struct ScaleFunctor
|
||||
{
|
||||
__device__ __forceinline__ void operator()(
|
||||
int chunk_size,
|
||||
volatile int* noop_gmem,
|
||||
TensorListMetadata<2>& tl,
|
||||
float scale)
|
||||
{
|
||||
template <typename in_t, typename out_t> struct ScaleFunctor {
|
||||
__device__ __forceinline__ void operator()(int chunk_size,
|
||||
volatile int *noop_gmem,
|
||||
TensorListMetadata<2> &tl,
|
||||
float scale) {
|
||||
// I'd like this kernel to propagate infs/nans.
|
||||
// if(*noop_gmem == 1)
|
||||
// return;
|
||||
|
@ -43,93 +40,85 @@ struct ScaleFunctor
|
|||
int chunk_idx = tl.block_to_chunk[blockIdx.x];
|
||||
int n = tl.sizes[tensor_loc];
|
||||
|
||||
in_t* in = (in_t*)tl.addresses[0][tensor_loc];
|
||||
in += chunk_idx*chunk_size;
|
||||
in_t *in = (in_t *)tl.addresses[0][tensor_loc];
|
||||
in += chunk_idx * chunk_size;
|
||||
|
||||
out_t* out = (out_t*)tl.addresses[1][tensor_loc];
|
||||
out += chunk_idx*chunk_size;
|
||||
out_t *out = (out_t *)tl.addresses[1][tensor_loc];
|
||||
out += chunk_idx * chunk_size;
|
||||
|
||||
n -= chunk_idx*chunk_size;
|
||||
n -= chunk_idx * chunk_size;
|
||||
|
||||
bool finite = true;
|
||||
in_t r_in[ILP];
|
||||
out_t r_out[ILP];
|
||||
|
||||
// to make things simple, we put aligned case in a different code path
|
||||
if(n % ILP == 0 && chunk_size % ILP == 0 && is_aligned(in) && is_aligned(out))
|
||||
{
|
||||
for(int i_start = threadIdx.x; i_start*ILP < n && i_start*ILP < chunk_size; i_start += blockDim.x)
|
||||
{
|
||||
if (n % ILP == 0 && chunk_size % ILP == 0 && is_aligned(in) &&
|
||||
is_aligned(out)) {
|
||||
for (int i_start = threadIdx.x;
|
||||
i_start * ILP < n && i_start * ILP < chunk_size;
|
||||
i_start += blockDim.x) {
|
||||
// load
|
||||
load_store(r_in, in, 0 , i_start);
|
||||
load_store(r_in, in, 0, i_start);
|
||||
#pragma unroll
|
||||
for(int ii = 0; ii < ILP; ii++)
|
||||
{
|
||||
for (int ii = 0; ii < ILP; ii++) {
|
||||
r_out[ii] = static_cast<float>(r_in[ii]) * scale;
|
||||
finite = finite && isfinite(r_in[ii]);
|
||||
}
|
||||
// store
|
||||
load_store(out, r_out, i_start, 0);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
} else {
|
||||
// Non-divergent exit condition for __syncthreads, not necessary here
|
||||
for(int i_start = 0; i_start < n && i_start < chunk_size; i_start += blockDim.x*ILP)
|
||||
{
|
||||
for (int i_start = 0; i_start < n && i_start < chunk_size;
|
||||
i_start += blockDim.x * ILP) {
|
||||
#pragma unroll
|
||||
for(int ii = 0; ii < ILP; ii++)
|
||||
{
|
||||
for (int ii = 0; ii < ILP; ii++) {
|
||||
r_in[ii] = 0;
|
||||
int i = i_start + threadIdx.x + ii*blockDim.x;
|
||||
if(i < n && i < chunk_size)
|
||||
int i = i_start + threadIdx.x + ii * blockDim.x;
|
||||
if (i < n && i < chunk_size)
|
||||
r_in[ii] = in[i];
|
||||
}
|
||||
// note for clarification to future michael:
|
||||
// From a pure memory dependency perspective, there's likely no point unrolling
|
||||
// the write loop, since writes just fire off once their LDGs arrive.
|
||||
// Put another way, the STGs are dependent on the LDGs, but not on each other.
|
||||
// There is still compute ILP benefit from unrolling the loop though.
|
||||
// From a pure memory dependency perspective, there's likely no point
|
||||
// unrolling the write loop, since writes just fire off once their LDGs
|
||||
// arrive. Put another way, the STGs are dependent on the LDGs, but not
|
||||
// on each other. There is still compute ILP benefit from unrolling the
|
||||
// loop though.
|
||||
#pragma unroll
|
||||
for(int ii = 0; ii < ILP; ii++)
|
||||
{
|
||||
for (int ii = 0; ii < ILP; ii++) {
|
||||
r_out[ii] = static_cast<float>(r_in[ii]) * scale;
|
||||
finite = finite && isfinite(r_in[ii]);
|
||||
}
|
||||
#pragma unroll
|
||||
for(int ii = 0; ii < ILP; ii++)
|
||||
{
|
||||
int i = i_start + threadIdx.x + ii*blockDim.x;
|
||||
if(i < n && i < chunk_size)
|
||||
for (int ii = 0; ii < ILP; ii++) {
|
||||
int i = i_start + threadIdx.x + ii * blockDim.x;
|
||||
if (i < n && i < chunk_size)
|
||||
out[i] = r_out[ii];
|
||||
}
|
||||
}
|
||||
}
|
||||
if(!finite)
|
||||
*noop_gmem = 1; // Blindly fire off a write. These will race but that's ok.
|
||||
if (!finite)
|
||||
*noop_gmem =
|
||||
1; // Blindly fire off a write. These will race but that's ok.
|
||||
}
|
||||
};
|
||||
|
||||
void multi_tensor_scale_cuda(
|
||||
int chunk_size,
|
||||
at::Tensor noop_flag,
|
||||
std::vector<std::vector<at::Tensor>> tensor_lists,
|
||||
float scale)
|
||||
{
|
||||
void multi_tensor_scale_cuda(int chunk_size, at::Tensor noop_flag,
|
||||
std::vector<std::vector<at::Tensor>> tensor_lists,
|
||||
float scale) {
|
||||
using namespace at;
|
||||
// The output (downscaled) type is always float.
|
||||
// If build times suffer, think about where to put this dispatch,
|
||||
// and what logic should be moved out of multi_tensor_apply.
|
||||
|
||||
DISPATCH_FLOAT_AND_HALF(tensor_lists[0][0].scalar_type(), 0, "multi_tensor_scale_cuda",
|
||||
DISPATCH_FLOAT_AND_HALF(tensor_lists[1][0].scalar_type(), 1, "multi_tensor_scale_cuda",
|
||||
multi_tensor_apply<2>(
|
||||
BLOCK_SIZE,
|
||||
chunk_size,
|
||||
noop_flag,
|
||||
tensor_lists,
|
||||
ScaleFunctor<scalar_t_0, scalar_t_1>(),
|
||||
scale); ))
|
||||
DISPATCH_FLOAT_AND_HALF(
|
||||
tensor_lists[0][0].scalar_type(), 0, "multi_tensor_scale_cuda",
|
||||
DISPATCH_FLOAT_AND_HALF(
|
||||
tensor_lists[1][0].scalar_type(), 1, "multi_tensor_scale_cuda",
|
||||
multi_tensor_apply<2>(BLOCK_SIZE, chunk_size, noop_flag, tensor_lists,
|
||||
ScaleFunctor<scalar_t_0, scalar_t_1>(),
|
||||
scale);))
|
||||
AT_CUDA_CHECK(cudaGetLastError());
|
||||
|
||||
// AT_CUDA_CHECK(cudaDeviceSynchronize());
|
||||
|
|
Loading…
Reference in New Issue