[hotfix] fix aten default bug (#2158)

pull/2159/head
YuliangLiu0306 2022-12-20 22:40:46 +08:00 committed by GitHub
parent a4b4bb01d6
commit 16335cb537
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
10 changed files with 133 additions and 118 deletions

View File

@ -7,6 +7,7 @@ from numbers import Number
from typing import Any, Callable, List from typing import Any, Callable, List
import torch import torch
from packaging import version
aten = torch.ops.aten aten = torch.ops.aten
@ -188,131 +189,136 @@ def zero_flop_jit(*args):
return 0 return 0
flop_mapping = { if version.parse(torch.__version__) >= version.parse('1.12.0'):
flop_mapping = {
# gemm # gemm
aten.mm.default: matmul_flop_jit, aten.mm.default: matmul_flop_jit,
aten.matmul.default: matmul_flop_jit, aten.matmul.default: matmul_flop_jit,
aten.addmm.default: addmm_flop_jit, aten.addmm.default: addmm_flop_jit,
aten.bmm.default: bmm_flop_jit, aten.bmm.default: bmm_flop_jit,
# convolution # convolution
aten.convolution.default: conv_flop_jit, aten.convolution.default: conv_flop_jit,
aten._convolution.default: conv_flop_jit, aten._convolution.default: conv_flop_jit,
aten.convolution_backward.default: conv_backward_flop_jit, aten.convolution_backward.default: conv_backward_flop_jit,
# normalization # normalization
aten.native_batch_norm.default: batchnorm_flop_jit, aten.native_batch_norm.default: batchnorm_flop_jit,
aten.native_batch_norm_backward.default: batchnorm_flop_jit, aten.native_batch_norm_backward.default: batchnorm_flop_jit,
aten.cudnn_batch_norm.default: batchnorm_flop_jit, aten.cudnn_batch_norm.default: batchnorm_flop_jit,
aten.cudnn_batch_norm_backward.default: partial(batchnorm_flop_jit, training=True), aten.cudnn_batch_norm_backward.default: partial(batchnorm_flop_jit, training=True),
aten.native_layer_norm.default: norm_flop_counter(2, 0), aten.native_layer_norm.default: norm_flop_counter(2, 0),
aten.native_layer_norm_backward.default: norm_flop_counter(2, 0), aten.native_layer_norm_backward.default: norm_flop_counter(2, 0),
# pooling # pooling
aten.avg_pool1d.default: elementwise_flop_counter(1, 0), aten.avg_pool1d.default: elementwise_flop_counter(1, 0),
aten.avg_pool2d.default: elementwise_flop_counter(1, 0), aten.avg_pool2d.default: elementwise_flop_counter(1, 0),
aten.avg_pool2d_backward.default: elementwise_flop_counter(0, 1), aten.avg_pool2d_backward.default: elementwise_flop_counter(0, 1),
aten.avg_pool3d.default: elementwise_flop_counter(1, 0), aten.avg_pool3d.default: elementwise_flop_counter(1, 0),
aten.avg_pool3d_backward.default: elementwise_flop_counter(0, 1), aten.avg_pool3d_backward.default: elementwise_flop_counter(0, 1),
aten.max_pool1d.default: elementwise_flop_counter(1, 0), aten.max_pool1d.default: elementwise_flop_counter(1, 0),
aten.max_pool2d.default: elementwise_flop_counter(1, 0), aten.max_pool2d.default: elementwise_flop_counter(1, 0),
aten.max_pool3d.default: elementwise_flop_counter(1, 0), aten.max_pool3d.default: elementwise_flop_counter(1, 0),
aten.max_pool1d_with_indices.default: elementwise_flop_counter(1, 0), aten.max_pool1d_with_indices.default: elementwise_flop_counter(1, 0),
aten.max_pool2d_with_indices.default: elementwise_flop_counter(1, 0), aten.max_pool2d_with_indices.default: elementwise_flop_counter(1, 0),
aten.max_pool2d_with_indices_backward.default: elementwise_flop_counter(0, 1), aten.max_pool2d_with_indices_backward.default: elementwise_flop_counter(0, 1),
aten.max_pool3d_with_indices.default: elementwise_flop_counter(1, 0), aten.max_pool3d_with_indices.default: elementwise_flop_counter(1, 0),
aten.max_pool3d_with_indices_backward.default: elementwise_flop_counter(0, 1), aten.max_pool3d_with_indices_backward.default: elementwise_flop_counter(0, 1),
aten._adaptive_avg_pool2d.default: elementwise_flop_counter(1, 0), aten._adaptive_avg_pool2d.default: elementwise_flop_counter(1, 0),
aten._adaptive_avg_pool2d_backward.default: elementwise_flop_counter(0, 1), aten._adaptive_avg_pool2d_backward.default: elementwise_flop_counter(0, 1),
aten._adaptive_avg_pool3d.default: elementwise_flop_counter(1, 0), aten._adaptive_avg_pool3d.default: elementwise_flop_counter(1, 0),
aten._adaptive_avg_pool3d_backward.default: elementwise_flop_counter(0, 1), aten._adaptive_avg_pool3d_backward.default: elementwise_flop_counter(0, 1),
aten.embedding_dense_backward.default: elementwise_flop_counter(0, 1), aten.embedding_dense_backward.default: elementwise_flop_counter(0, 1),
aten.embedding.default: elementwise_flop_counter(1, 0), aten.embedding.default: elementwise_flop_counter(1, 0),
} }
elementwise_flop_aten = [ elementwise_flop_aten = [
# basic op # basic op
aten.add.Tensor, aten.add.Tensor,
aten.add_.Tensor, aten.add_.Tensor,
aten.div.Tensor, aten.div.Tensor,
aten.div_.Tensor, aten.div_.Tensor,
aten.div.Scalar, aten.div.Scalar,
aten.div_.Scalar, aten.div_.Scalar,
aten.mul.Tensor, aten.mul.Tensor,
aten.mul.Scalar, aten.mul.Scalar,
aten.mul_.Tensor, aten.mul_.Tensor,
aten.neg.default, aten.neg.default,
aten.pow.Tensor_Scalar, aten.pow.Tensor_Scalar,
aten.rsub.Scalar, aten.rsub.Scalar,
aten.sum.default, aten.sum.default,
aten.sum.dim_IntList, aten.sum.dim_IntList,
aten.mean.dim, aten.mean.dim,
# activation op # activation op
aten.hardswish.default, aten.hardswish.default,
aten.hardswish_.default, aten.hardswish_.default,
aten.hardswish_backward.default, aten.hardswish_backward.default,
aten.hardtanh.default, aten.hardtanh.default,
aten.hardtanh_.default, aten.hardtanh_.default,
aten.hardtanh_backward.default, aten.hardtanh_backward.default,
aten.hardsigmoid_backward.default, aten.hardsigmoid_backward.default,
aten.hardsigmoid.default, aten.hardsigmoid.default,
aten.gelu.default, aten.gelu.default,
aten.gelu_backward.default, aten.gelu_backward.default,
aten.silu.default, aten.silu.default,
aten.silu_.default, aten.silu_.default,
aten.silu_backward.default, aten.silu_backward.default,
aten.sigmoid.default, aten.sigmoid.default,
aten.sigmoid_backward.default, aten.sigmoid_backward.default,
aten._softmax.default, aten._softmax.default,
aten._softmax_backward_data.default, aten._softmax_backward_data.default,
aten.relu_.default, aten.relu_.default,
aten.relu.default, aten.relu.default,
aten.tanh.default, aten.tanh.default,
aten.tanh_backward.default, aten.tanh_backward.default,
aten.threshold_backward.default, aten.threshold_backward.default,
# dropout # dropout
aten.native_dropout.default, aten.native_dropout.default,
aten.native_dropout_backward.default, aten.native_dropout_backward.default,
] ]
for op in elementwise_flop_aten:
flop_mapping[op] = elementwise_flop_counter(1, 0)
for op in elementwise_flop_aten: # TODO: this will be removed in future
flop_mapping[op] = elementwise_flop_counter(1, 0) zero_flop_aten = [
aten.as_strided.default,
aten.as_strided_.default,
aten.bernoulli_.float,
aten.cat.default,
aten.clone.default,
aten.copy_.default,
aten.detach.default,
aten.expand.default,
aten.empty_like.default,
aten.new_empty.default,
aten.new_empty_strided.default,
aten.ones_like.default,
aten._reshape_alias.default,
aten.select.int,
aten.select_backward.default,
aten.squeeze.dim,
aten.slice.Tensor,
aten.slice_backward.default,
aten.split.Tensor,
aten.permute.default,
aten.t.default,
aten.transpose.int,
aten._to_copy.default,
aten.unsqueeze.default,
aten.unbind.int,
aten._unsafe_view.default,
aten.view.default,
aten.where.self,
aten.zero_.default,
aten.zeros_like.default,
]
# TODO: this will be removed in future for op in zero_flop_aten:
zero_flop_aten = [ flop_mapping[op] = zero_flop_jit
aten.as_strided.default,
aten.as_strided_.default,
aten.bernoulli_.float,
aten.cat.default,
aten.clone.default,
aten.copy_.default,
aten.detach.default,
aten.expand.default,
aten.empty_like.default,
aten.new_empty.default,
aten.new_empty_strided.default,
aten.ones_like.default,
aten._reshape_alias.default,
aten.select.int,
aten.select_backward.default,
aten.squeeze.dim,
aten.slice.Tensor,
aten.slice_backward.default,
aten.split.Tensor,
aten.permute.default,
aten.t.default,
aten.transpose.int,
aten._to_copy.default,
aten.unsqueeze.default,
aten.unbind.int,
aten._unsafe_view.default,
aten.view.default,
aten.where.self,
aten.zero_.default,
aten.zeros_like.default,
]
for op in zero_flop_aten: else:
flop_mapping[op] = zero_flop_jit flop_mapping = {}
elementwise_flop_aten = {}
zero_flop_aten = {}

View File

@ -207,9 +207,9 @@ def check_binary_elementwise_handler_with_int(rank, op, other_dim, world_size, p
assert input_sharding_spec.sharding_sequence == output_sharding_spec.sharding_sequence assert input_sharding_spec.sharding_sequence == output_sharding_spec.sharding_sequence
@run_on_environment_flag(name='AUTO_PARALLEL')
@parameterize('op', [torch.add]) @parameterize('op', [torch.add])
@parameterize('other_dim', [1, 2]) @parameterize('other_dim', [1, 2])
@run_on_environment_flag(name='AUTO_PARALLEL')
@pytest.mark.dist @pytest.mark.dist
@rerun_if_address_is_in_use() @rerun_if_address_is_in_use()
def test_binary_elementwise_handler(op, other_dim): def test_binary_elementwise_handler(op, other_dim):

View File

@ -203,8 +203,8 @@ def check_1d_device_mesh(rank, module, world_size, port):
assert other_sharding_spec.sharding_sequence[-1] == output_sharding_spec.sharding_sequence[-1] assert other_sharding_spec.sharding_sequence[-1] == output_sharding_spec.sharding_sequence[-1]
@parameterize('module', [BMMTensorMethodModule, BMMTorchFunctionModule])
@run_on_environment_flag(name='AUTO_PARALLEL') @run_on_environment_flag(name='AUTO_PARALLEL')
@parameterize('module', [BMMTensorMethodModule, BMMTorchFunctionModule])
@pytest.mark.dist @pytest.mark.dist
@rerun_if_address_is_in_use() @rerun_if_address_is_in_use()
def test_bmm_handler(module): def test_bmm_handler(module):

View File

@ -23,6 +23,7 @@ class GetItemFromTensorModel(nn.Module):
return x return x
@run_on_environment_flag(name='AUTO_PARALLEL')
def test_getitem_from_tensor_handler(): def test_getitem_from_tensor_handler():
model = GetItemFromTensorModel() model = GetItemFromTensorModel()
tracer = ColoTracer() tracer = ColoTracer()
@ -96,6 +97,7 @@ class GetItemFromTupleModel(nn.Module):
return x return x
@run_on_environment_flag(name='AUTO_PARALLEL')
def test_getitem_from_tuple_handler(): def test_getitem_from_tuple_handler():
model = GetItemFromTupleModel() model = GetItemFromTupleModel()
tracer = ColoTracer() tracer = ColoTracer()

View File

@ -308,8 +308,8 @@ def check_linear_function_handler(rank, bias, input_shape, world_size, port):
assert bias_sharding_spec.sharding_sequence[-1] == output_sharding_spec.sharding_sequence[-1] assert bias_sharding_spec.sharding_sequence[-1] == output_sharding_spec.sharding_sequence[-1]
@parameterize('input_shape', [(1, 4, 4, 16), (4, 4, 4, 16)])
@run_on_environment_flag(name='AUTO_PARALLEL') @run_on_environment_flag(name='AUTO_PARALLEL')
@parameterize('input_shape', [(1, 4, 4, 16), (4, 4, 4, 16)])
@pytest.mark.dist @pytest.mark.dist
@rerun_if_address_is_in_use() @rerun_if_address_is_in_use()
def test_linear_handler(input_shape, bias=False): def test_linear_handler(input_shape, bias=False):

View File

@ -2,15 +2,15 @@ import pytest
import torch import torch
import torch.nn as nn import torch.nn as nn
from colossalai.auto_parallel.tensor_shard.node_handler.normal_pooling_handler import \ from colossalai.auto_parallel.tensor_shard.node_handler.normal_pooling_handler import NormPoolingHandler
NormPoolingHandler from colossalai.auto_parallel.tensor_shard.sharding_strategy import OperationData, OperationDataType, StrategiesVector
from colossalai.auto_parallel.tensor_shard.sharding_strategy import (OperationData, OperationDataType, StrategiesVector)
from colossalai.device.device_mesh import DeviceMesh from colossalai.device.device_mesh import DeviceMesh
from colossalai.fx import ColoGraphModule, ColoTracer from colossalai.fx import ColoGraphModule, ColoTracer
from colossalai.fx.tracer.meta_patch.patched_module import linear from colossalai.fx.tracer.meta_patch.patched_module import linear
from colossalai.testing.pytest_wrapper import run_on_environment_flag from colossalai.testing.pytest_wrapper import run_on_environment_flag
@run_on_environment_flag(name='AUTO_PARALLEL')
def test_norm_pool_handler(): def test_norm_pool_handler():
model = nn.Sequential(nn.MaxPool2d(4, padding=1).to('meta')) model = nn.Sequential(nn.MaxPool2d(4, padding=1).to('meta'))
tracer = ColoTracer() tracer = ColoTracer()

View File

@ -20,6 +20,7 @@ class ReshapeModel(nn.Module):
return reshape_node return reshape_node
@run_on_environment_flag(name='AUTO_PARALLEL')
def test_reshape_handler(): def test_reshape_handler():
model = ReshapeModel() model = ReshapeModel()
tracer = ColoTracer() tracer = ColoTracer()

View File

@ -5,6 +5,7 @@ from colossalai.auto_parallel.tensor_shard.node_handler.tensor_constructor_handl
from colossalai.auto_parallel.tensor_shard.sharding_strategy import OperationData, OperationDataType, StrategiesVector from colossalai.auto_parallel.tensor_shard.sharding_strategy import OperationData, OperationDataType, StrategiesVector
from colossalai.device.device_mesh import DeviceMesh from colossalai.device.device_mesh import DeviceMesh
from colossalai.fx import ColoGraphModule, ColoTracer from colossalai.fx import ColoGraphModule, ColoTracer
from colossalai.testing.pytest_wrapper import run_on_environment_flag
class TensorConstructorModel(nn.Module): class TensorConstructorModel(nn.Module):
@ -18,6 +19,7 @@ class TensorConstructorModel(nn.Module):
return x return x
@run_on_environment_flag(name='AUTO_PARALLEL')
def test_where_handler(): def test_where_handler():
model = TensorConstructorModel() model = TensorConstructorModel()
tracer = ColoTracer() tracer = ColoTracer()

View File

@ -22,6 +22,7 @@ class ReLuModel(nn.Module):
return relu_node return relu_node
@run_on_environment_flag(name='AUTO_PARALLEL')
def test_elementwise_handler(): def test_elementwise_handler():
model = ReLuModel() model = ReLuModel()
tracer = ColoTracer() tracer = ColoTracer()

View File

@ -10,6 +10,7 @@ from colossalai.auto_parallel.tensor_shard.solver import (
) )
from colossalai.device.device_mesh import DeviceMesh from colossalai.device.device_mesh import DeviceMesh
from colossalai.fx import ColoGraphModule, ColoTracer from colossalai.fx import ColoGraphModule, ColoTracer
from colossalai.testing.pytest_wrapper import run_on_environment_flag
def _param_resharding_cost_assertion(node): def _param_resharding_cost_assertion(node):
@ -51,6 +52,7 @@ class ConvModel(torch.nn.Module):
return x return x
@run_on_environment_flag(name='AUTO_PARALLEL')
def test_linear_module(): def test_linear_module():
model = LinearModel(4, 8) model = LinearModel(4, 8)
physical_mesh_id = torch.arange(0, 4) physical_mesh_id = torch.arange(0, 4)
@ -86,6 +88,7 @@ def test_linear_module():
_param_resharding_cost_assertion(linear_node) _param_resharding_cost_assertion(linear_node)
@run_on_environment_flag(name='AUTO_PARALLEL')
def test_conv_module(): def test_conv_module():
model = ConvModel(3, 6, 2) model = ConvModel(3, 6, 2)
physical_mesh_id = torch.arange(0, 4) physical_mesh_id = torch.arange(0, 4)