mirror of https://github.com/hpcaitech/ColossalAI
[tensor] sharded global process group (#1219)
parent
db1bef9032
commit
15d988f954
|
@ -1,6 +1,41 @@
|
|||
import torch
|
||||
from typing import List, Optional
|
||||
from colossalai.logging import get_dist_logger
|
||||
from colossalai.context.singleton_meta import SingletonMeta
|
||||
|
||||
|
||||
class PyTorchProcessGroupDict(metaclass=SingletonMeta):
|
||||
|
||||
def __init__(self):
|
||||
# distributed settings
|
||||
self.dict = {}
|
||||
|
||||
def get(self, rank: int, world_size: int, tp_degree: int, dp_degree: int, backend: str = 'nccl'):
|
||||
key = (tp_degree, dp_degree, backend)
|
||||
if key in self.dict:
|
||||
return self.dict[key]
|
||||
else:
|
||||
self.logger = get_dist_logger('PyTorchProcessGroupDict')
|
||||
_tp_rank_list = []
|
||||
_dp_rank_list = []
|
||||
|
||||
for rank_id in range(world_size):
|
||||
# rank_id and self._rank in the same tp group
|
||||
if rank_id % tp_degree == rank % tp_degree:
|
||||
_dp_rank_list.append(rank_id)
|
||||
if rank_id // tp_degree == rank // tp_degree:
|
||||
_tp_rank_list.append(rank_id)
|
||||
|
||||
_tp_process_group = torch.distributed.new_group(ranks=_tp_rank_list, backend=backend)
|
||||
_dp_process_group = torch.distributed.new_group(ranks=_dp_rank_list, backend=backend)
|
||||
self.logger.info(
|
||||
f'rank {rank} initialize process group on {backend}, dp ranks: {_dp_rank_list} tp ranks: {_tp_rank_list}'
|
||||
)
|
||||
self.dict[key] = _tp_rank_list, _tp_process_group, _dp_rank_list, _dp_process_group
|
||||
return _tp_rank_list, _tp_process_group, _dp_rank_list, _dp_process_group
|
||||
|
||||
|
||||
PYTORCHPGDICT_ = PyTorchProcessGroupDict()
|
||||
|
||||
|
||||
class ProcessGroup:
|
||||
|
@ -15,6 +50,7 @@ class ProcessGroup:
|
|||
dp_degree: Optional[int], data parallelism degree, default None means len(ranks)
|
||||
"""
|
||||
|
||||
#TODO(haichen) fix me! ranks now must start from 0,1,2,3...
|
||||
def __init__(self,
|
||||
rank: Optional[int] = None,
|
||||
ranks: Optional[List[int]] = None,
|
||||
|
@ -50,23 +86,8 @@ class ProcessGroup:
|
|||
assert self._world_size % self._tp_degree == 0, f"TP degree {tp_degree} should be divisible by {self._world_size} when DP degree is None"
|
||||
self._dp_degree = self._world_size // tp_degree
|
||||
|
||||
self._tp_rank_list = []
|
||||
self._dp_rank_list = []
|
||||
|
||||
for rank_id in range(self._world_size):
|
||||
# rank_id and self._rank in the same tp group
|
||||
if rank_id % self._tp_degree == self._rank % self._tp_degree:
|
||||
self._dp_rank_list.append(rank_id)
|
||||
if rank_id // self._tp_degree == self._rank // self._tp_degree:
|
||||
self._tp_rank_list.append(rank_id)
|
||||
|
||||
self._tp_process_group = torch.distributed.new_group(ranks=self._tp_rank_list, backend='nccl')
|
||||
self._dp_process_group = torch.distributed.new_group(ranks=self._dp_rank_list, backend='nccl')
|
||||
|
||||
self.logger = get_dist_logger('ProcessGroup')
|
||||
self.logger.info(
|
||||
f'{self._rank} NCCL initialize TP group on {self._tp_rank_list}, DP group on {self._dp_rank_list}')
|
||||
|
||||
self._tp_rank_list, self._tp_process_group, self._dp_rank_list, self._dp_process_group = PYTORCHPGDICT_.get(
|
||||
self._rank, self._world_size, self._tp_degree, self._dp_degree, 'nccl')
|
||||
self._has_cpu_groups = False
|
||||
|
||||
def set_cpu_groups(self):
|
||||
|
@ -77,6 +98,9 @@ class ProcessGroup:
|
|||
self._cpu_tp_process_group = torch.distributed.new_group(ranks=self._tp_rank_list, backend='gloo')
|
||||
self._cpu_dp_process_group = torch.distributed.new_group(ranks=self._dp_rank_list, backend='gloo')
|
||||
|
||||
_, self._cpu_tp_process_group, _, self._cpu_dp_process_group = PYTORCHPGDICT_.get(
|
||||
self._rank, self._world_size, self._tp_degree, self._dp_degree, 'gloo')
|
||||
|
||||
@property
|
||||
def has_cpu_groups(self):
|
||||
return self._has_cpu_groups
|
||||
|
|
|
@ -103,9 +103,9 @@ def run_dist_tests(rank, world_size, port):
|
|||
_run_view(world_size)
|
||||
_run_process_group(world_size)
|
||||
_run_tensor_indexing()
|
||||
_run_operand()
|
||||
# TODO not passed
|
||||
# _run_wrapped_tensor_func()
|
||||
_run_operand()
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
|
|
Loading…
Reference in New Issue