mirror of https://github.com/hpcaitech/ColossalAI
[coati] add chatglm model (#4539)
* update configuration of chatglm and add support in coati * add unit test & update chatglm default config & fix bos index issue * remove chatglm due to oom * add dataset pkg in requirement-text * fix parameter issue in test_models * add ref in tokenize & rm unnessary parts * separate source & target tokenization in chatglm * add unit test to chatglm * fix test dataset issue * update truncation of chatglm * fix Colossalai version * fix colossal ai version in testpull/4541/head
parent
0b00def881
commit
1467e3b41b
|
@ -19,7 +19,7 @@ import torch
|
||||||
from torch.utils.data import Dataset
|
from torch.utils.data import Dataset
|
||||||
from tqdm import tqdm
|
from tqdm import tqdm
|
||||||
from transformers import PreTrainedTokenizer
|
from transformers import PreTrainedTokenizer
|
||||||
|
from coati.models.chatglm.chatglm_tokenizer import ChatGLMTokenizer
|
||||||
from colossalai.logging import get_dist_logger
|
from colossalai.logging import get_dist_logger
|
||||||
|
|
||||||
from .utils import is_rank_0, jload
|
from .utils import is_rank_0, jload
|
||||||
|
@ -71,6 +71,42 @@ def _preprocess(sources: Sequence[str],
|
||||||
return sequences_token["input_ids"], labels, sequences_token["attention_mask"]
|
return sequences_token["input_ids"], labels, sequences_token["attention_mask"]
|
||||||
|
|
||||||
|
|
||||||
|
def _preprocess_chatglm(sources: Sequence[str],
|
||||||
|
targets: Sequence[str],
|
||||||
|
tokenizer: PreTrainedTokenizer,
|
||||||
|
max_length: int,
|
||||||
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
||||||
|
"""
|
||||||
|
Preprocess the data by tokenizing.
|
||||||
|
None for attention mask, ChatGLM will calculate attention mask according to input ids
|
||||||
|
"""
|
||||||
|
|
||||||
|
labels = []
|
||||||
|
input_ids = []
|
||||||
|
for source, target in zip(sources, targets):
|
||||||
|
source_id = tokenizer.encode(text=source, add_special_tokens=False)
|
||||||
|
target_id = tokenizer.encode(text=target, add_special_tokens=False)
|
||||||
|
input_id = tokenizer.build_inputs_with_special_tokens(source_id, target_id)
|
||||||
|
# truncate
|
||||||
|
sp_token_list = [tokenizer.gmask_token_id, tokenizer.bos_token_id]
|
||||||
|
truncate_length = max(0, len(input_id) - max_length)
|
||||||
|
input_id = input_id[truncate_length: ]
|
||||||
|
if truncate_length == len(source_id) + 1:
|
||||||
|
input_id = sp_token_list + input_id[1: ]
|
||||||
|
elif truncate_length > len(source_id) + 1:
|
||||||
|
input_id = sp_token_list + input_id[2: ]
|
||||||
|
|
||||||
|
context_length = input_id.index(tokenizer.bos_token_id)
|
||||||
|
mask_position = context_length - 1
|
||||||
|
label = [IGNORE_INDEX] * context_length + input_id[mask_position+1:]
|
||||||
|
|
||||||
|
pad_len = max_length - len(input_id)
|
||||||
|
input_id = input_id + [tokenizer.pad_token_id] * pad_len
|
||||||
|
input_ids.append(input_id)
|
||||||
|
labels.append(label + [IGNORE_INDEX] * pad_len)
|
||||||
|
return torch.tensor(input_ids), torch.tensor(labels), None
|
||||||
|
|
||||||
|
|
||||||
class SFTDataset(Dataset):
|
class SFTDataset(Dataset):
|
||||||
"""
|
"""
|
||||||
Dataset for sft model
|
Dataset for sft model
|
||||||
|
@ -94,18 +130,25 @@ class SFTDataset(Dataset):
|
||||||
data["completion"] + tokenizer.eos_token
|
data["completion"] + tokenizer.eos_token
|
||||||
for data in tqdm(dataset, disable=not is_rank_0())
|
for data in tqdm(dataset, disable=not is_rank_0())
|
||||||
]
|
]
|
||||||
|
if isinstance(tokenizer, ChatGLMTokenizer):
|
||||||
self.input_ids, self.labels, self.attention_mask = \
|
self.input_ids, self.labels, self.attention_mask = \
|
||||||
_preprocess(sources, targets, tokenizer, max_length)
|
_preprocess_chatglm(sources, targets, tokenizer, max_length)
|
||||||
|
else:
|
||||||
|
self.input_ids, self.labels, self.attention_mask = \
|
||||||
|
_preprocess(sources, targets, tokenizer, max_length)
|
||||||
|
|
||||||
def __len__(self):
|
def __len__(self):
|
||||||
length = self.input_ids.shape[0]
|
length = self.input_ids.shape[0]
|
||||||
return length
|
return length
|
||||||
|
|
||||||
def __getitem__(self, idx):
|
def __getitem__(self, idx):
|
||||||
return dict(input_ids=self.input_ids[idx],
|
if self.attention_mask is not None:
|
||||||
labels=self.labels[idx],
|
return dict(input_ids=self.input_ids[idx],
|
||||||
attention_mask=self.attention_mask[idx])
|
labels=self.labels[idx],
|
||||||
|
attention_mask=self.attention_mask[idx])
|
||||||
|
else:
|
||||||
|
return dict(input_ids=self.input_ids[idx],
|
||||||
|
labels=self.labels[idx])
|
||||||
|
|
||||||
|
|
||||||
class SupervisedDataset(Dataset):
|
class SupervisedDataset(Dataset):
|
||||||
|
@ -137,14 +180,22 @@ class SupervisedDataset(Dataset):
|
||||||
]
|
]
|
||||||
|
|
||||||
logger.info("Tokenizing inputs... This may take some time...")
|
logger.info("Tokenizing inputs... This may take some time...")
|
||||||
self.input_ids, self.labels, self.attention_mask = \
|
if isinstance(tokenizer, ChatGLMTokenizer):
|
||||||
_preprocess(sources, targets, tokenizer, max_length)
|
self.input_ids, self.labels, self.attention_mask = \
|
||||||
|
_preprocess_chatglm(sources, targets, tokenizer, max_length)
|
||||||
|
else:
|
||||||
|
self.input_ids, self.labels, self.attention_mask = \
|
||||||
|
_preprocess(sources, targets, tokenizer, max_length)
|
||||||
|
|
||||||
def __len__(self):
|
def __len__(self):
|
||||||
length = self.input_ids.shape[0]
|
length = self.input_ids.shape[0]
|
||||||
return length
|
return length
|
||||||
|
|
||||||
def __getitem__(self, idx):
|
def __getitem__(self, idx):
|
||||||
return dict(input_ids=self.input_ids[idx],
|
if self.attention_mask is not None:
|
||||||
labels=self.labels[idx],
|
return dict(input_ids=self.input_ids[idx],
|
||||||
attention_mask=self.attention_mask[idx])
|
labels=self.labels[idx],
|
||||||
|
attention_mask=self.attention_mask[idx])
|
||||||
|
else:
|
||||||
|
return dict(input_ids=self.input_ids[idx],
|
||||||
|
labels=self.labels[idx])
|
||||||
|
|
|
@ -0,0 +1,3 @@
|
||||||
|
from .chatglm_actor import ChatGLMActor
|
||||||
|
|
||||||
|
__all__ = ['ChatGLMActor']
|
|
@ -0,0 +1,34 @@
|
||||||
|
from typing import Optional
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from .configuration_chatglm import ChatGLMConfig
|
||||||
|
from .modeling_chatglm import ChatGLMForConditionalGeneration
|
||||||
|
|
||||||
|
from ..base import Actor
|
||||||
|
|
||||||
|
|
||||||
|
class ChatGLMActor(Actor):
|
||||||
|
"""
|
||||||
|
ChatGLM Actor model.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
pretrained (str): Pretrained model name or path.
|
||||||
|
config (ChatGLMConfig): Model config.
|
||||||
|
checkpoint (bool): Enable gradient checkpointing.
|
||||||
|
|
||||||
|
do not support lora for now.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self,
|
||||||
|
pretrained: str = None,
|
||||||
|
config: Optional[ChatGLMConfig] = None,
|
||||||
|
checkpoint: bool = False) -> None:
|
||||||
|
if pretrained is not None:
|
||||||
|
model = ChatGLMForConditionalGeneration.from_pretrained(pretrained)
|
||||||
|
elif config is not None:
|
||||||
|
model = ChatGLMForConditionalGeneration(config)
|
||||||
|
else:
|
||||||
|
model = ChatGLMForConditionalGeneration(ChatGLMConfig())
|
||||||
|
if checkpoint:
|
||||||
|
model.gradient_checkpointing_enable()
|
||||||
|
super().__init__(model, lora_rank=0, lora_train_bias='none')
|
|
@ -0,0 +1,446 @@
|
||||||
|
"""
|
||||||
|
This code is copied from https://huggingface.co/THUDM/chatglm-6b/blob/main/tokenization_chatglm.py
|
||||||
|
"""
|
||||||
|
"""Tokenization classes for ChatGLM."""
|
||||||
|
from typing import List, Optional, Union
|
||||||
|
import os
|
||||||
|
|
||||||
|
from transformers.tokenization_utils import PreTrainedTokenizer
|
||||||
|
from transformers.utils import logging, PaddingStrategy
|
||||||
|
from transformers.tokenization_utils_base import EncodedInput, BatchEncoding
|
||||||
|
from typing import Dict
|
||||||
|
import sentencepiece as spm
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
logger = logging.get_logger(__name__)
|
||||||
|
|
||||||
|
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
|
||||||
|
"THUDM/chatglm-6b": 2048,
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
class TextTokenizer:
|
||||||
|
def __init__(self, model_path):
|
||||||
|
self.sp = spm.SentencePieceProcessor()
|
||||||
|
self.sp.Load(model_path)
|
||||||
|
self.num_tokens = self.sp.vocab_size()
|
||||||
|
|
||||||
|
def encode(self, text):
|
||||||
|
return self.sp.EncodeAsIds(text)
|
||||||
|
|
||||||
|
def decode(self, ids: List[int]):
|
||||||
|
return self.sp.DecodeIds(ids)
|
||||||
|
|
||||||
|
def tokenize(self, text):
|
||||||
|
return self.sp.EncodeAsPieces(text)
|
||||||
|
|
||||||
|
def convert_tokens_to_string(self, tokens):
|
||||||
|
return self.sp.DecodePieces(tokens)
|
||||||
|
|
||||||
|
def convert_tokens_to_ids(self, tokens):
|
||||||
|
return [self.sp.PieceToId(token) for token in tokens]
|
||||||
|
|
||||||
|
def convert_token_to_id(self, token):
|
||||||
|
return self.sp.PieceToId(token)
|
||||||
|
|
||||||
|
def convert_id_to_token(self, idx):
|
||||||
|
return self.sp.IdToPiece(idx)
|
||||||
|
|
||||||
|
def __len__(self):
|
||||||
|
return self.num_tokens
|
||||||
|
|
||||||
|
|
||||||
|
class SPTokenizer:
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
vocab_file,
|
||||||
|
num_image_tokens=20000,
|
||||||
|
max_blank_length=80,
|
||||||
|
byte_fallback=True,
|
||||||
|
):
|
||||||
|
assert vocab_file is not None
|
||||||
|
self.vocab_file = vocab_file
|
||||||
|
self.num_image_tokens = num_image_tokens
|
||||||
|
self.special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "<unused_0>", "<sop>", "<eop>", "<ENC>", "<dBLOCK>"]
|
||||||
|
self.max_blank_length = max_blank_length
|
||||||
|
self.byte_fallback = byte_fallback
|
||||||
|
self.text_tokenizer = TextTokenizer(vocab_file)
|
||||||
|
|
||||||
|
def _get_text_tokenizer(self):
|
||||||
|
return self.text_tokenizer
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def get_blank_token(length: int):
|
||||||
|
assert length >= 2
|
||||||
|
return f"<|blank_{length}|>"
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def get_tab_token():
|
||||||
|
return f"<|tab|>"
|
||||||
|
|
||||||
|
@property
|
||||||
|
def num_text_tokens(self):
|
||||||
|
return self.text_tokenizer.num_tokens
|
||||||
|
|
||||||
|
@property
|
||||||
|
def num_tokens(self):
|
||||||
|
return self.num_image_tokens + self.num_text_tokens
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def _encode_whitespaces(text: str, max_len: int = 80):
|
||||||
|
text = text.replace("\t", SPTokenizer.get_tab_token())
|
||||||
|
for i in range(max_len, 1, -1):
|
||||||
|
text = text.replace(" " * i, SPTokenizer.get_blank_token(i))
|
||||||
|
return text
|
||||||
|
|
||||||
|
def _preprocess(self, text: str, linebreak=True, whitespaces=True):
|
||||||
|
if linebreak:
|
||||||
|
text = text.replace("\n", "<n>")
|
||||||
|
if whitespaces:
|
||||||
|
text = self._encode_whitespaces(text, max_len=self.max_blank_length)
|
||||||
|
return text
|
||||||
|
|
||||||
|
def encode(
|
||||||
|
self, text: str, linebreak=True, whitespaces=True, add_dummy_prefix=True
|
||||||
|
) -> List[int]:
|
||||||
|
"""
|
||||||
|
@param text: Text to encode.
|
||||||
|
@param linebreak: Whether to encode newline (\n) in text.
|
||||||
|
@param whitespaces: Whether to encode multiple whitespaces or tab in text, useful for source code encoding.
|
||||||
|
@param special_tokens: Whether to encode special token ([MASK], [gMASK], etc.) in text.
|
||||||
|
@param add_dummy_prefix: Whether to add dummy blank space in the beginning.
|
||||||
|
"""
|
||||||
|
text = self._preprocess(text, linebreak, whitespaces)
|
||||||
|
if not add_dummy_prefix:
|
||||||
|
text = "<n>" + text
|
||||||
|
tmp = self._get_text_tokenizer().encode(text)
|
||||||
|
tokens = [x + self.num_image_tokens for x in tmp]
|
||||||
|
return tokens if add_dummy_prefix else tokens[2:]
|
||||||
|
|
||||||
|
def postprocess(self, text):
|
||||||
|
text = text.replace("<n>", "\n")
|
||||||
|
text = text.replace(SPTokenizer.get_tab_token(), "\t")
|
||||||
|
for i in range(2, self.max_blank_length + 1):
|
||||||
|
text = text.replace(self.get_blank_token(i), " " * i)
|
||||||
|
return text
|
||||||
|
|
||||||
|
def decode(self, text_ids: List[int]) -> str:
|
||||||
|
ids = [int(_id) - self.num_image_tokens for _id in text_ids]
|
||||||
|
ids = [_id for _id in ids if _id >= 0]
|
||||||
|
text = self._get_text_tokenizer().decode(ids)
|
||||||
|
text = self.postprocess(text)
|
||||||
|
return text
|
||||||
|
|
||||||
|
def decode_tokens(self, tokens: List[str]) -> str:
|
||||||
|
text = self._get_text_tokenizer().convert_tokens_to_string(tokens)
|
||||||
|
text = self.postprocess(text)
|
||||||
|
return text
|
||||||
|
|
||||||
|
def tokenize(
|
||||||
|
self, text: str, linebreak=True, whitespaces=True, add_dummy_prefix=True
|
||||||
|
) -> List[str]:
|
||||||
|
"""
|
||||||
|
@param text: Text to encode.
|
||||||
|
@param linebreak: Whether to encode newline (\n) in text.
|
||||||
|
@param whitespaces: Whether to encode multiple whitespaces or tab in text, useful for source code encoding.
|
||||||
|
@param special_tokens: Whether to encode special token ([MASK], [gMASK], etc.) in text.
|
||||||
|
@param add_dummy_prefix: Whether to add dummy blank space in the beginning.
|
||||||
|
"""
|
||||||
|
text = self._preprocess(text, linebreak, whitespaces)
|
||||||
|
if not add_dummy_prefix:
|
||||||
|
text = "<n>" + text
|
||||||
|
tokens = self._get_text_tokenizer().tokenize(text)
|
||||||
|
return tokens if add_dummy_prefix else tokens[2:]
|
||||||
|
|
||||||
|
def __getitem__(self, x: Union[int, str]):
|
||||||
|
if isinstance(x, int):
|
||||||
|
if x < self.num_image_tokens:
|
||||||
|
return "<image_{}>".format(x)
|
||||||
|
else:
|
||||||
|
return self.text_tokenizer.convert_id_to_token(x - self.num_image_tokens)
|
||||||
|
elif isinstance(x, str):
|
||||||
|
if x.startswith("<image_") and x.endswith(">") and x[7:-1].isdigit():
|
||||||
|
return int(x[7:-1])
|
||||||
|
else:
|
||||||
|
return self.text_tokenizer.convert_token_to_id(x) + self.num_image_tokens
|
||||||
|
else:
|
||||||
|
raise ValueError("The key should be str or int.")
|
||||||
|
|
||||||
|
|
||||||
|
class ChatGLMTokenizer(PreTrainedTokenizer):
|
||||||
|
"""
|
||||||
|
Construct a ChatGLM tokenizer. Based on byte-level Byte-Pair-Encoding.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
vocab_file (`str`):
|
||||||
|
Path to the vocabulary file.
|
||||||
|
"""
|
||||||
|
|
||||||
|
vocab_files_names = {"vocab_file": "ice_text.model"}
|
||||||
|
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
||||||
|
model_input_names = ["input_ids", "attention_mask", "position_ids"]
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
vocab_file,
|
||||||
|
do_lower_case=False,
|
||||||
|
remove_space=False,
|
||||||
|
bos_token='<sop>',
|
||||||
|
eos_token='<eop>',
|
||||||
|
end_token='</s>',
|
||||||
|
mask_token='[MASK]',
|
||||||
|
gmask_token='[gMASK]',
|
||||||
|
padding_side="left",
|
||||||
|
pad_token="<pad>",
|
||||||
|
unk_token="<unk>",
|
||||||
|
num_image_tokens=20000,
|
||||||
|
**kwargs
|
||||||
|
) -> None:
|
||||||
|
super().__init__(
|
||||||
|
do_lower_case=do_lower_case,
|
||||||
|
remove_space=remove_space,
|
||||||
|
padding_side=padding_side,
|
||||||
|
bos_token=bos_token,
|
||||||
|
eos_token=eos_token,
|
||||||
|
end_token=end_token,
|
||||||
|
mask_token=mask_token,
|
||||||
|
gmask_token=gmask_token,
|
||||||
|
pad_token=pad_token,
|
||||||
|
unk_token=unk_token,
|
||||||
|
num_image_tokens=num_image_tokens,
|
||||||
|
**kwargs
|
||||||
|
)
|
||||||
|
|
||||||
|
self.do_lower_case = do_lower_case
|
||||||
|
self.remove_space = remove_space
|
||||||
|
self.vocab_file = vocab_file
|
||||||
|
|
||||||
|
self.bos_token = bos_token
|
||||||
|
self.eos_token = eos_token
|
||||||
|
self.end_token = end_token
|
||||||
|
self.mask_token = mask_token
|
||||||
|
self.gmask_token = gmask_token
|
||||||
|
|
||||||
|
self.sp_tokenizer = SPTokenizer(vocab_file, num_image_tokens=num_image_tokens)
|
||||||
|
|
||||||
|
""" Initialisation """
|
||||||
|
|
||||||
|
@property
|
||||||
|
def gmask_token_id(self) -> Optional[int]:
|
||||||
|
if self.gmask_token is None:
|
||||||
|
return None
|
||||||
|
return self.convert_tokens_to_ids(self.gmask_token)
|
||||||
|
|
||||||
|
@property
|
||||||
|
def end_token_id(self) -> Optional[int]:
|
||||||
|
"""
|
||||||
|
`Optional[int]`: Id of the end of context token in the vocabulary. Returns `None` if the token has not been
|
||||||
|
set.
|
||||||
|
"""
|
||||||
|
if self.end_token is None:
|
||||||
|
return None
|
||||||
|
return self.convert_tokens_to_ids(self.end_token)
|
||||||
|
|
||||||
|
@property
|
||||||
|
def vocab_size(self):
|
||||||
|
""" Returns vocab size """
|
||||||
|
return self.sp_tokenizer.num_tokens
|
||||||
|
|
||||||
|
def get_vocab(self):
|
||||||
|
""" Returns vocab as a dict """
|
||||||
|
vocab = {self._convert_id_to_token(i): i for i in range(self.vocab_size)}
|
||||||
|
vocab.update(self.added_tokens_encoder)
|
||||||
|
return vocab
|
||||||
|
|
||||||
|
def preprocess_text(self, inputs):
|
||||||
|
if self.remove_space:
|
||||||
|
outputs = " ".join(inputs.strip().split())
|
||||||
|
else:
|
||||||
|
outputs = inputs
|
||||||
|
|
||||||
|
if self.do_lower_case:
|
||||||
|
outputs = outputs.lower()
|
||||||
|
|
||||||
|
return outputs
|
||||||
|
|
||||||
|
def _tokenize(self, text, **kwargs):
|
||||||
|
""" Returns a tokenized string. """
|
||||||
|
text = self.preprocess_text(text)
|
||||||
|
|
||||||
|
seq = self.sp_tokenizer.tokenize(text)
|
||||||
|
|
||||||
|
return seq
|
||||||
|
|
||||||
|
def convert_tokens_to_string(self, tokens: List[str]) -> str:
|
||||||
|
return self.sp_tokenizer.decode_tokens(tokens)
|
||||||
|
|
||||||
|
def _decode(
|
||||||
|
self,
|
||||||
|
token_ids: Union[int, List[int]],
|
||||||
|
**kwargs
|
||||||
|
) -> str:
|
||||||
|
if isinstance(token_ids, int):
|
||||||
|
token_ids = [token_ids]
|
||||||
|
if len(token_ids) == 0:
|
||||||
|
return ""
|
||||||
|
if self.pad_token_id in token_ids: # remove pad
|
||||||
|
token_ids = list(filter((self.pad_token_id).__ne__, token_ids))
|
||||||
|
return super()._decode(token_ids, **kwargs)
|
||||||
|
|
||||||
|
def _convert_token_to_id(self, token):
|
||||||
|
""" Converts a token (str) in an id using the vocab. """
|
||||||
|
return self.sp_tokenizer[token]
|
||||||
|
|
||||||
|
def _convert_id_to_token(self, index):
|
||||||
|
"""Converts an index (integer) in a token (str) using the vocab."""
|
||||||
|
return self.sp_tokenizer[index]
|
||||||
|
|
||||||
|
def save_vocabulary(self, save_directory, filename_prefix=None):
|
||||||
|
"""
|
||||||
|
Save the vocabulary and special tokens file to a directory.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
save_directory (`str`):
|
||||||
|
The directory in which to save the vocabulary.
|
||||||
|
filename_prefix (`str`, *optional*):
|
||||||
|
An optional prefix to add to the named of the saved files.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
`Tuple(str)`: Paths to the files saved.
|
||||||
|
"""
|
||||||
|
if os.path.isdir(save_directory):
|
||||||
|
vocab_file = os.path.join(
|
||||||
|
save_directory, self.vocab_files_names["vocab_file"]
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
vocab_file = save_directory
|
||||||
|
|
||||||
|
with open(self.vocab_file, 'rb') as fin:
|
||||||
|
proto_str = fin.read()
|
||||||
|
|
||||||
|
with open(vocab_file, "wb") as writer:
|
||||||
|
writer.write(proto_str)
|
||||||
|
|
||||||
|
return (vocab_file,)
|
||||||
|
|
||||||
|
def build_inputs_with_special_tokens(
|
||||||
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
||||||
|
) -> List[int]:
|
||||||
|
"""
|
||||||
|
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
||||||
|
adding special tokens. A BERT sequence has the following format:
|
||||||
|
|
||||||
|
- single sequence: `[CLS] X [SEP]`
|
||||||
|
- pair of sequences: `[CLS] A [SEP] B [SEP]`
|
||||||
|
|
||||||
|
Args:
|
||||||
|
token_ids_0 (`List[int]`):
|
||||||
|
List of IDs to which the special tokens will be added.
|
||||||
|
token_ids_1 (`List[int]`, *optional*):
|
||||||
|
Optional second list of IDs for sequence pairs.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
||||||
|
"""
|
||||||
|
gmask_id = self.sp_tokenizer[self.gmask_token]
|
||||||
|
eos_id = self.sp_tokenizer[self.eos_token]
|
||||||
|
token_ids_0 = token_ids_0 + [gmask_id, self.sp_tokenizer[self.bos_token]]
|
||||||
|
if token_ids_1 is not None:
|
||||||
|
token_ids_0 = token_ids_0 + token_ids_1
|
||||||
|
return token_ids_0
|
||||||
|
|
||||||
|
def _pad(
|
||||||
|
self,
|
||||||
|
encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
|
||||||
|
max_length: Optional[int] = None,
|
||||||
|
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
|
||||||
|
pad_to_multiple_of: Optional[int] = None,
|
||||||
|
return_attention_mask: Optional[bool] = None,
|
||||||
|
) -> dict:
|
||||||
|
"""
|
||||||
|
Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
|
||||||
|
|
||||||
|
Args:
|
||||||
|
encoded_inputs:
|
||||||
|
Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`).
|
||||||
|
max_length: maximum length of the returned list and optionally padding length (see below).
|
||||||
|
Will truncate by taking into account the special tokens.
|
||||||
|
padding_strategy: PaddingStrategy to use for padding.
|
||||||
|
|
||||||
|
- PaddingStrategy.LONGEST Pad to the longest sequence in the batch
|
||||||
|
- PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
|
||||||
|
- PaddingStrategy.DO_NOT_PAD: Do not pad
|
||||||
|
The tokenizer padding sides are defined in self.padding_side:
|
||||||
|
|
||||||
|
- 'left': pads on the left of the sequences
|
||||||
|
- 'right': pads on the right of the sequences
|
||||||
|
pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value.
|
||||||
|
This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability
|
||||||
|
`>= 7.5` (Volta).
|
||||||
|
return_attention_mask:
|
||||||
|
(optional) Set to False to avoid returning attention mask (default: set to model specifics)
|
||||||
|
"""
|
||||||
|
# Load from model defaults
|
||||||
|
bos_token_id = self.sp_tokenizer[self.bos_token]
|
||||||
|
mask_token_id = self.sp_tokenizer[self.mask_token]
|
||||||
|
gmask_token_id = self.sp_tokenizer[self.gmask_token]
|
||||||
|
assert self.padding_side == "left"
|
||||||
|
|
||||||
|
required_input = encoded_inputs[self.model_input_names[0]]
|
||||||
|
seq_length = len(required_input)
|
||||||
|
|
||||||
|
if padding_strategy == PaddingStrategy.LONGEST:
|
||||||
|
max_length = len(required_input)
|
||||||
|
|
||||||
|
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
|
||||||
|
max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
|
||||||
|
|
||||||
|
needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length
|
||||||
|
|
||||||
|
# Initialize attention mask if not present.
|
||||||
|
if max_length is not None:
|
||||||
|
if "attention_mask" not in encoded_inputs:
|
||||||
|
if bos_token_id in required_input:
|
||||||
|
context_length = required_input.index(bos_token_id)
|
||||||
|
else:
|
||||||
|
context_length = seq_length
|
||||||
|
attention_mask = np.ones((1, seq_length, seq_length))
|
||||||
|
attention_mask = np.tril(attention_mask)
|
||||||
|
attention_mask[:, :, :context_length] = 1
|
||||||
|
attention_mask = np.bool_(attention_mask < 0.5)
|
||||||
|
encoded_inputs["attention_mask"] = attention_mask
|
||||||
|
|
||||||
|
if "position_ids" not in encoded_inputs:
|
||||||
|
if bos_token_id in required_input:
|
||||||
|
context_length = required_input.index(bos_token_id)
|
||||||
|
else:
|
||||||
|
context_length = seq_length
|
||||||
|
position_ids = np.arange(seq_length, dtype=np.int64)
|
||||||
|
mask_token = mask_token_id if mask_token_id in required_input else gmask_token_id
|
||||||
|
if mask_token in required_input:
|
||||||
|
mask_position = required_input.index(mask_token)
|
||||||
|
position_ids[context_length:] = mask_position
|
||||||
|
block_position_ids = np.concatenate(
|
||||||
|
[np.zeros(context_length, dtype=np.int64),
|
||||||
|
np.arange(1, seq_length - context_length + 1, dtype=np.int64)])
|
||||||
|
encoded_inputs["position_ids"] = np.stack([position_ids, block_position_ids], axis=0)
|
||||||
|
|
||||||
|
if needs_to_be_padded:
|
||||||
|
difference = max_length - len(required_input)
|
||||||
|
|
||||||
|
if "attention_mask" in encoded_inputs:
|
||||||
|
encoded_inputs["attention_mask"] = np.pad(encoded_inputs["attention_mask"],
|
||||||
|
pad_width=[(0, 0), (difference, 0), (difference, 0)],
|
||||||
|
mode='constant', constant_values=True)
|
||||||
|
if "token_type_ids" in encoded_inputs:
|
||||||
|
encoded_inputs["token_type_ids"] = [self.pad_token_type_id] * difference + encoded_inputs[
|
||||||
|
"token_type_ids"
|
||||||
|
]
|
||||||
|
if "special_tokens_mask" in encoded_inputs:
|
||||||
|
encoded_inputs["special_tokens_mask"] = [1] * difference + encoded_inputs["special_tokens_mask"]
|
||||||
|
if "position_ids" in encoded_inputs:
|
||||||
|
encoded_inputs["position_ids"] = np.pad(encoded_inputs["position_ids"],
|
||||||
|
pad_width=[(0, 0), (difference, 0)])
|
||||||
|
encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input
|
||||||
|
|
||||||
|
return encoded_inputs
|
|
@ -0,0 +1,107 @@
|
||||||
|
"""
|
||||||
|
This code is copied from https://huggingface.co/THUDM/chatglm-6b/resolve/main/configuration_chatglm.py
|
||||||
|
"""
|
||||||
|
|
||||||
|
""" ChatGLM model configuration """
|
||||||
|
|
||||||
|
from transformers.configuration_utils import PretrainedConfig
|
||||||
|
from transformers.utils import logging
|
||||||
|
|
||||||
|
logger = logging.get_logger(__name__)
|
||||||
|
|
||||||
|
|
||||||
|
class ChatGLMConfig(PretrainedConfig):
|
||||||
|
r"""
|
||||||
|
This is the configuration class to store the configuration of a [`~ChatGLMModel`].
|
||||||
|
It is used to instantiate an ChatGLM model according to the specified arguments, defining the model
|
||||||
|
architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of
|
||||||
|
the ChatGLM-6B [THUDM/ChatGLM-6B](https://huggingface.co/THUDM/chatglm-6b) architecture.
|
||||||
|
|
||||||
|
Configuration objects inherit from [`PretrainedConfig`] and can be used
|
||||||
|
to control the model outputs. Read the documentation from [`PretrainedConfig`]
|
||||||
|
for more information.
|
||||||
|
|
||||||
|
|
||||||
|
Args:
|
||||||
|
vocab_size (`int`, *optional*, defaults to 150528):
|
||||||
|
Vocabulary size of the ChatGLM-6B model. Defines the number of different tokens that can be represented by the
|
||||||
|
`inputs_ids` passed when calling [`~ChatGLMModel`] or
|
||||||
|
[`~TFChatGLMModel`].
|
||||||
|
hidden_size (`int`, *optional*, defaults to 4096):
|
||||||
|
Dimension of the encoder layers and the pooler layer.
|
||||||
|
num_hidden_layers (`int`, *optional*, defaults to 28):
|
||||||
|
Number of hidden layers in the Transformer encoder.
|
||||||
|
num_attention_heads (`int`, *optional*, defaults to 32):
|
||||||
|
Number of attention heads for each attention layer in the Transformer encoder.
|
||||||
|
inner_hidden_size (`int`, *optional*, defaults to 16384):
|
||||||
|
Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
||||||
|
max_sequence_length (`int`, *optional*, defaults to 512):
|
||||||
|
The maximum sequence length that this model might ever be used with.
|
||||||
|
Typically set this to something large just in case (e.g., 512 or 1024 or 2048).
|
||||||
|
layernorm_epsilon (`float`, *optional*, defaults to 1e-5):
|
||||||
|
The epsilon used by the layer normalization layers.
|
||||||
|
use_cache (`bool`, *optional*, defaults to `True`):
|
||||||
|
Whether the model should return the last key/values attentions (not used by all models).
|
||||||
|
Example:
|
||||||
|
|
||||||
|
```python
|
||||||
|
>>> from configuration_chatglm import ChatGLMConfig
|
||||||
|
>>> from modeling_chatglm import ChatGLMModel
|
||||||
|
|
||||||
|
>>> # Initializing a ChatGLM-6B THUDM/ChatGLM-6B style configuration
|
||||||
|
>>> configuration = ChatGLMConfig()
|
||||||
|
|
||||||
|
>>> # Initializing a model from the THUDM/ChatGLM-6B style configuration
|
||||||
|
>>> model = ChatGLMModel(configuration)
|
||||||
|
|
||||||
|
>>> # Accessing the model configuration
|
||||||
|
>>> configuration = model.config
|
||||||
|
```
|
||||||
|
"""
|
||||||
|
model_type = "chatglm"
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
vocab_size=130528,
|
||||||
|
hidden_size=4096,
|
||||||
|
num_layers=28,
|
||||||
|
num_attention_heads=32,
|
||||||
|
layernorm_epsilon=1e-5,
|
||||||
|
use_cache=True,
|
||||||
|
bos_token_id=130004,
|
||||||
|
eos_token_id=130005,
|
||||||
|
mask_token_id=130000,
|
||||||
|
gmask_token_id=130001,
|
||||||
|
pad_token_id=3,
|
||||||
|
max_sequence_length=2048,
|
||||||
|
inner_hidden_size=16384,
|
||||||
|
position_encoding_2d=True,
|
||||||
|
quantization_bit=0,
|
||||||
|
pre_seq_len=None,
|
||||||
|
prefix_projection=False,
|
||||||
|
**kwargs
|
||||||
|
):
|
||||||
|
self.num_layers = num_layers
|
||||||
|
self.vocab_size = vocab_size
|
||||||
|
self.hidden_size = hidden_size
|
||||||
|
self.num_attention_heads = num_attention_heads
|
||||||
|
self.max_sequence_length = max_sequence_length
|
||||||
|
self.layernorm_epsilon = layernorm_epsilon
|
||||||
|
self.inner_hidden_size = inner_hidden_size
|
||||||
|
self.use_cache = use_cache
|
||||||
|
self.bos_token_id = bos_token_id
|
||||||
|
self.eos_token_id = eos_token_id
|
||||||
|
self.pad_token_id = pad_token_id
|
||||||
|
self.mask_token_id = mask_token_id
|
||||||
|
self.gmask_token_id = gmask_token_id
|
||||||
|
self.position_encoding_2d = position_encoding_2d
|
||||||
|
self.quantization_bit = quantization_bit
|
||||||
|
self.pre_seq_len = pre_seq_len
|
||||||
|
self.prefix_projection = prefix_projection
|
||||||
|
|
||||||
|
super().__init__(
|
||||||
|
pad_token_id=pad_token_id,
|
||||||
|
bos_token_id=bos_token_id,
|
||||||
|
eos_token_id=eos_token_id,
|
||||||
|
**kwargs
|
||||||
|
)
|
File diff suppressed because it is too large
Load Diff
|
@ -52,9 +52,13 @@ class SFTTrainer(SLTrainer):
|
||||||
for batch_id, batch in enumerate(self.train_dataloader):
|
for batch_id, batch in enumerate(self.train_dataloader):
|
||||||
|
|
||||||
batch = to_device(batch, torch.cuda.current_device())
|
batch = to_device(batch, torch.cuda.current_device())
|
||||||
outputs = self.model(batch["input_ids"],
|
if "attention_mask" in batch:
|
||||||
attention_mask=batch["attention_mask"],
|
outputs = self.model(batch["input_ids"],
|
||||||
labels=batch["labels"])
|
attention_mask=batch["attention_mask"],
|
||||||
|
labels=batch["labels"])
|
||||||
|
else:
|
||||||
|
outputs = self.model(batch["input_ids"],
|
||||||
|
labels=batch["labels"])
|
||||||
|
|
||||||
loss = outputs.loss
|
loss = outputs.loss
|
||||||
loss = loss / self.accumulation_steps
|
loss = loss / self.accumulation_steps
|
||||||
|
|
|
@ -9,13 +9,15 @@ from coati.models.bloom import BLOOMActor
|
||||||
from coati.models.gpt import GPTActor
|
from coati.models.gpt import GPTActor
|
||||||
from coati.models.llama import LlamaActor
|
from coati.models.llama import LlamaActor
|
||||||
from coati.models.opt import OPTActor
|
from coati.models.opt import OPTActor
|
||||||
|
from coati.models.chatglm import ChatGLMActor
|
||||||
from coati.trainer import SFTTrainer
|
from coati.trainer import SFTTrainer
|
||||||
from coati.trainer.strategies import DDPStrategy, GeminiStrategy, LowLevelZeroStrategy
|
from coati.trainer.strategies import DDPStrategy, GeminiStrategy, LowLevelZeroStrategy
|
||||||
from datasets import load_dataset
|
from datasets import load_dataset
|
||||||
from torch.optim import Adam
|
from torch.optim import Adam
|
||||||
from torch.utils.data import DataLoader
|
from torch.utils.data import DataLoader
|
||||||
from torch.utils.data.distributed import DistributedSampler
|
from torch.utils.data.distributed import DistributedSampler
|
||||||
from transformers import AutoTokenizer, BloomTokenizerFast, LlamaTokenizer
|
from transformers import AutoTokenizer, BloomTokenizerFast, LlamaTokenizer, AutoModel
|
||||||
|
from coati.models.chatglm.chatglm_tokenizer import ChatGLMTokenizer
|
||||||
from transformers.models.gpt2.tokenization_gpt2 import GPT2Tokenizer
|
from transformers.models.gpt2.tokenization_gpt2 import GPT2Tokenizer
|
||||||
from transformers.trainer import get_scheduler
|
from transformers.trainer import get_scheduler
|
||||||
|
|
||||||
|
@ -58,6 +60,8 @@ def train(args):
|
||||||
model = LlamaActor(pretrained=args.pretrain,
|
model = LlamaActor(pretrained=args.pretrain,
|
||||||
lora_rank=args.lora_rank,
|
lora_rank=args.lora_rank,
|
||||||
checkpoint=args.grad_checkpoint)
|
checkpoint=args.grad_checkpoint)
|
||||||
|
elif args.model == 'chatglm':
|
||||||
|
model = ChatGLMActor(pretrained=args.pretrain)
|
||||||
else:
|
else:
|
||||||
raise ValueError(f'Unsupported model "{args.model}"')
|
raise ValueError(f'Unsupported model "{args.model}"')
|
||||||
|
|
||||||
|
@ -81,6 +85,9 @@ def train(args):
|
||||||
"hf-internal-testing/llama-tokenizer" if args.tokenizer is None else args.tokenizer)
|
"hf-internal-testing/llama-tokenizer" if args.tokenizer is None else args.tokenizer)
|
||||||
tokenizer.eos_token = '<\s>'
|
tokenizer.eos_token = '<\s>'
|
||||||
tokenizer.pad_token = tokenizer.unk_token
|
tokenizer.pad_token = tokenizer.unk_token
|
||||||
|
elif args.model == 'chatglm':
|
||||||
|
tokenizer = ChatGLMTokenizer.from_pretrained(
|
||||||
|
"THUDM/chatglm-6b" if args.tokenizer is None else args.tokenizer, trust_remote_code=True)
|
||||||
else:
|
else:
|
||||||
raise ValueError(f'Unsupported model "{args.model}"')
|
raise ValueError(f'Unsupported model "{args.model}"')
|
||||||
|
|
||||||
|
@ -99,7 +106,6 @@ def train(args):
|
||||||
optim = HybridAdam(model.parameters(), lr=args.lr, clipping_norm=1.0)
|
optim = HybridAdam(model.parameters(), lr=args.lr, clipping_norm=1.0)
|
||||||
else:
|
else:
|
||||||
optim = Adam(model.parameters(), lr=args.lr)
|
optim = Adam(model.parameters(), lr=args.lr)
|
||||||
|
|
||||||
logger = get_dist_logger()
|
logger = get_dist_logger()
|
||||||
|
|
||||||
# configure dataset
|
# configure dataset
|
||||||
|
@ -185,7 +191,7 @@ if __name__ == '__main__':
|
||||||
parser.add_argument('--strategy',
|
parser.add_argument('--strategy',
|
||||||
choices=['ddp', 'colossalai_gemini', 'colossalai_zero2', 'colossalai_zero2_cpu'],
|
choices=['ddp', 'colossalai_gemini', 'colossalai_zero2', 'colossalai_zero2_cpu'],
|
||||||
default='colossalai_zero2')
|
default='colossalai_zero2')
|
||||||
parser.add_argument('--model', choices=['gpt2', 'bloom', 'opt', 'llama'], default='bloom')
|
parser.add_argument('--model', choices=['gpt2', 'bloom', 'opt', 'llama', 'chatglm'], default='bloom')
|
||||||
parser.add_argument('--tokenizer', type=str, default=None)
|
parser.add_argument('--tokenizer', type=str, default=None)
|
||||||
parser.add_argument('--pretrain', type=str, default=None)
|
parser.add_argument('--pretrain', type=str, default=None)
|
||||||
parser.add_argument('--dataset', type=str, default=None)
|
parser.add_argument('--dataset', type=str, default=None)
|
||||||
|
|
|
@ -1 +1,2 @@
|
||||||
pytest
|
pytest
|
||||||
|
colossalai==0.3.1
|
|
@ -2,7 +2,7 @@ transformers>=4.20.1
|
||||||
tqdm
|
tqdm
|
||||||
datasets
|
datasets
|
||||||
loralib
|
loralib
|
||||||
colossalai>=0.2.4
|
colossalai==0.3.1
|
||||||
torch<2.0.0, >=1.12.1
|
torch<2.0.0, >=1.12.1
|
||||||
langchain
|
langchain
|
||||||
tokenizers
|
tokenizers
|
||||||
|
|
|
@ -11,7 +11,7 @@ from coati.dataset.sft_dataset import IGNORE_INDEX, SFTDataset, SupervisedDatase
|
||||||
from datasets import load_dataset
|
from datasets import load_dataset
|
||||||
from transformers import AutoTokenizer, BloomTokenizerFast, LlamaTokenizer, PreTrainedTokenizer
|
from transformers import AutoTokenizer, BloomTokenizerFast, LlamaTokenizer, PreTrainedTokenizer
|
||||||
from transformers.models.gpt2.tokenization_gpt2 import GPT2Tokenizer
|
from transformers.models.gpt2.tokenization_gpt2 import GPT2Tokenizer
|
||||||
|
from coati.models.chatglm.chatglm_tokenizer import ChatGLMTokenizer
|
||||||
SFT_DATASET = [
|
SFT_DATASET = [
|
||||||
{
|
{
|
||||||
"instruction": "Provide a list of the top 10 most popular mobile games in Asia",
|
"instruction": "Provide a list of the top 10 most popular mobile games in Asia",
|
||||||
|
@ -66,6 +66,8 @@ def make_tokenizer(model: str):
|
||||||
elif model == "llama":
|
elif model == "llama":
|
||||||
tokenizer = LlamaTokenizer.from_pretrained("hf-internal-testing/llama-tokenizer")
|
tokenizer = LlamaTokenizer.from_pretrained("hf-internal-testing/llama-tokenizer")
|
||||||
tokenizer.pad_token = tokenizer.unk_token
|
tokenizer.pad_token = tokenizer.unk_token
|
||||||
|
elif model == "chatglm":
|
||||||
|
tokenizer = ChatGLMTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)
|
||||||
else:
|
else:
|
||||||
raise ValueError(f"Unsupported model '{model}'")
|
raise ValueError(f"Unsupported model '{model}'")
|
||||||
return tokenizer
|
return tokenizer
|
||||||
|
@ -81,13 +83,19 @@ def check_content(input_ids_stripped: torch.Tensor,
|
||||||
elif model == "llama":
|
elif model == "llama":
|
||||||
assert input_ids_stripped[0] == tokenizer.bos_token_id
|
assert input_ids_stripped[0] == tokenizer.bos_token_id
|
||||||
input_ids_stripped = input_ids_stripped[1:]
|
input_ids_stripped = input_ids_stripped[1:]
|
||||||
|
elif model == "chatglm":
|
||||||
|
assert input_ids_stripped[0] == tokenizer.bos_token_id
|
||||||
|
assert input_ids_stripped[-1] == tokenizer.eos_token_id
|
||||||
|
input_ids_stripped = input_ids_stripped[1:-1]
|
||||||
assert torch.all(input_ids_stripped != tokenizer.pad_token_id)
|
assert torch.all(input_ids_stripped != tokenizer.pad_token_id)
|
||||||
assert torch.all(input_ids_stripped != tokenizer.bos_token_id)
|
assert torch.all(input_ids_stripped != tokenizer.bos_token_id)
|
||||||
assert torch.all(input_ids_stripped != tokenizer.eos_token_id)
|
assert torch.all(input_ids_stripped != tokenizer.eos_token_id)
|
||||||
assert input_ids_stripped != tokenizer.sep_token_id
|
assert input_ids_stripped != tokenizer.sep_token_id
|
||||||
assert input_ids_stripped != tokenizer.cls_token_id
|
assert input_ids_stripped != tokenizer.cls_token_id
|
||||||
assert input_ids_stripped != tokenizer.mask_token_id
|
if model == "chatglm":
|
||||||
|
assert torch.all(input_ids_stripped != tokenizer.mask_token_id)
|
||||||
|
else:
|
||||||
|
assert input_ids_stripped != tokenizer.mask_token_id
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.cpu
|
@pytest.mark.cpu
|
||||||
|
@ -189,7 +197,7 @@ def test_reward_dataset(model: str,
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.cpu
|
@pytest.mark.cpu
|
||||||
@pytest.mark.parametrize("model", ["gpt2", "bloom", "opt", "llama"])
|
@pytest.mark.parametrize("model", ["gpt2", "bloom", "opt", "llama", "chatglm"])
|
||||||
@pytest.mark.parametrize("dataset_path", ["yizhongw/self_instruct", None])
|
@pytest.mark.parametrize("dataset_path", ["yizhongw/self_instruct", None])
|
||||||
@pytest.mark.parametrize("max_dataset_size", [2])
|
@pytest.mark.parametrize("max_dataset_size", [2])
|
||||||
@pytest.mark.parametrize("max_length", [32, 1024])
|
@pytest.mark.parametrize("max_length", [32, 1024])
|
||||||
|
@ -213,6 +221,19 @@ def test_sft_dataset(model: str,
|
||||||
max_length=max_length)
|
max_length=max_length)
|
||||||
assert len(sft_dataset) == min(max_dataset_size, len(SFT_DATASET))
|
assert len(sft_dataset) == min(max_dataset_size, len(SFT_DATASET))
|
||||||
|
|
||||||
|
if isinstance(tokenizer, ChatGLMTokenizer):
|
||||||
|
for i in range(max_dataset_size):
|
||||||
|
assert isinstance(sft_dataset[i], dict)
|
||||||
|
assert list(sft_dataset[i].keys()) == ["input_ids", "labels"]
|
||||||
|
input_ids = sft_dataset[i]["input_ids"]
|
||||||
|
labels = sft_dataset[i]["labels"]
|
||||||
|
assert input_ids.shape == labels.shape == torch.Size([max_length])
|
||||||
|
|
||||||
|
ignore_mask = labels == IGNORE_INDEX
|
||||||
|
assert input_ids.masked_select(torch.logical_not(ignore_mask))[0] == tokenizer.bos_token_id
|
||||||
|
check_content(input_ids.masked_select(torch.logical_not(ignore_mask)), tokenizer, model)
|
||||||
|
return
|
||||||
|
|
||||||
for i in range(max_dataset_size):
|
for i in range(max_dataset_size):
|
||||||
assert isinstance(sft_dataset[i], dict)
|
assert isinstance(sft_dataset[i], dict)
|
||||||
assert list(sft_dataset[i].keys()) == ["input_ids", "labels", "attention_mask"]
|
assert list(sft_dataset[i].keys()) == ["input_ids", "labels", "attention_mask"]
|
||||||
|
@ -245,4 +266,4 @@ if __name__ == "__main__":
|
||||||
|
|
||||||
test_prompt_dataset(model="opt",
|
test_prompt_dataset(model="opt",
|
||||||
max_datasets_size=2,
|
max_datasets_size=2,
|
||||||
max_length=128)
|
max_length=128)
|
|
@ -9,11 +9,12 @@ from coati.models.bloom import BLOOMRM, BLOOMActor, BLOOMCritic
|
||||||
from coati.models.generation import generate
|
from coati.models.generation import generate
|
||||||
from coati.models.gpt import GPTRM, GPTActor, GPTCritic
|
from coati.models.gpt import GPTRM, GPTActor, GPTCritic
|
||||||
from coati.models.llama import LlamaActor, LlamaCritic, LlamaRM
|
from coati.models.llama import LlamaActor, LlamaCritic, LlamaRM
|
||||||
|
from coati.models.chatglm import ChatGLMActor
|
||||||
from coati.models.lora import LoraLinear, convert_to_lora_module
|
from coati.models.lora import LoraLinear, convert_to_lora_module
|
||||||
from coati.models.loss import GPTLMLoss, LogExpLoss, LogSigLoss, PolicyLoss, ValueLoss
|
from coati.models.loss import GPTLMLoss, LogExpLoss, LogSigLoss, PolicyLoss, ValueLoss
|
||||||
from coati.models.opt import OPTRM, OPTActor, OPTCritic
|
from coati.models.opt import OPTRM, OPTActor, OPTCritic
|
||||||
from coati.models.utils import calc_action_log_probs, compute_reward, masked_mean
|
from coati.models.utils import calc_action_log_probs, compute_reward, masked_mean
|
||||||
|
from coati.models.chatglm.chatglm_tokenizer import ChatGLMTokenizer
|
||||||
|
|
||||||
@pytest.mark.gpu
|
@pytest.mark.gpu
|
||||||
@pytest.mark.parametrize("batch_size", [4])
|
@pytest.mark.parametrize("batch_size", [4])
|
||||||
|
@ -23,7 +24,8 @@ from coati.models.utils import calc_action_log_probs, compute_reward, masked_mea
|
||||||
lambda: GPTActor(),
|
lambda: GPTActor(),
|
||||||
# HACK: skip llama due to long execution time
|
# HACK: skip llama due to long execution time
|
||||||
# lambda: LlamaActor(),
|
# lambda: LlamaActor(),
|
||||||
lambda: OPTActor()
|
lambda: OPTActor(),
|
||||||
|
# lambda: ChatGLMActor(),
|
||||||
])
|
])
|
||||||
@pytest.mark.parametrize("generate_kwargs", [{
|
@pytest.mark.parametrize("generate_kwargs", [{
|
||||||
"max_length": 64,
|
"max_length": 64,
|
||||||
|
@ -129,12 +131,12 @@ def test_lora(lora_rank: int,
|
||||||
# HACK: skip llama due to long execution time
|
# HACK: skip llama due to long execution time
|
||||||
# lambda: (LlamaActor(), LlamaCritic(), LlamaRM()),
|
# lambda: (LlamaActor(), LlamaCritic(), LlamaRM()),
|
||||||
lambda: (OPTActor(), OPTCritic(), OPTRM()),
|
lambda: (OPTActor(), OPTCritic(), OPTRM()),
|
||||||
|
lambda: (ChatGLMActor(), None, None),
|
||||||
])
|
])
|
||||||
@torch.no_grad()
|
@torch.no_grad()
|
||||||
def test_models(models_maker: Callable[[], Tuple[Actor, Critic, RewardModel]],
|
def test_models(models_maker: Callable[[], Tuple[Actor, Critic, RewardModel]],
|
||||||
batch_size: int,
|
batch_size: int,
|
||||||
seq_len: int):
|
seq_len: int):
|
||||||
|
|
||||||
actor_input = {
|
actor_input = {
|
||||||
"input_ids": torch.randint(0, 100, (batch_size, seq_len)),
|
"input_ids": torch.randint(0, 100, (batch_size, seq_len)),
|
||||||
"attention_mask": torch.randint(0, 2, (batch_size, seq_len))
|
"attention_mask": torch.randint(0, 2, (batch_size, seq_len))
|
||||||
|
@ -150,20 +152,30 @@ def test_models(models_maker: Callable[[], Tuple[Actor, Critic, RewardModel]],
|
||||||
}
|
}
|
||||||
|
|
||||||
actor, critic, rm = models_maker()
|
actor, critic, rm = models_maker()
|
||||||
|
if isinstance(actor, ChatGLMActor):
|
||||||
|
actor = actor.float()
|
||||||
|
tokenizer = ChatGLMTokenizer.from_pretrained( "THUDM/chatglm-6b", trust_remote_code=True)
|
||||||
|
chatglm_special_token = torch.tensor([tokenizer.gmask_token_id, tokenizer.bos_token_id]).repeat(batch_size, 1)
|
||||||
|
actor_input ={
|
||||||
|
"input_ids": torch.cat((torch.randint(0, 100, (batch_size, seq_len//2)), chatglm_special_token, torch.randint(0, 100, (batch_size, seq_len//2 - 2))), dim=1),
|
||||||
|
"attention_mask": torch.randint(0, 2, (batch_size, 1, seq_len, seq_len))
|
||||||
|
}
|
||||||
assert isinstance(actor, Actor)
|
assert isinstance(actor, Actor)
|
||||||
base_actor_model = get_base_model(actor)
|
base_actor_model = get_base_model(actor)
|
||||||
assert isinstance(critic, Critic)
|
|
||||||
base_critic_model = get_base_model(critic)
|
|
||||||
assert isinstance(rm, RewardModel)
|
|
||||||
base_rm_model = get_base_model(rm)
|
|
||||||
|
|
||||||
actor_output = actor(**actor_input)
|
actor_output = actor(**actor_input)
|
||||||
critic_output = critic(**critic_input)
|
|
||||||
rm_output = rm(**rm_input)
|
|
||||||
|
|
||||||
assert actor_output.logits.shape[:2] == (batch_size, seq_len)
|
assert actor_output.logits.shape[:2] == (batch_size, seq_len)
|
||||||
assert critic_output.shape == (batch_size, )
|
|
||||||
assert rm_output.shape == (batch_size, )
|
if critic:
|
||||||
|
assert isinstance(critic, Critic)
|
||||||
|
base_critic_model = get_base_model(critic)
|
||||||
|
critic_output = critic(**critic_input)
|
||||||
|
assert critic_output.shape == (batch_size, )
|
||||||
|
|
||||||
|
if rm:
|
||||||
|
assert isinstance(rm, RewardModel)
|
||||||
|
base_rm_model = get_base_model(rm)
|
||||||
|
rm_output = rm(**rm_input)
|
||||||
|
assert rm_output.shape == (batch_size, )
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.cpu
|
@pytest.mark.cpu
|
||||||
|
@ -232,4 +244,4 @@ if __name__ == "__main__":
|
||||||
batch_size=8,
|
batch_size=8,
|
||||||
seq_len=128)
|
seq_len=128)
|
||||||
|
|
||||||
test_loss(batch_size=8, seq_len=128, num_labels=100)
|
test_loss(batch_size=8, seq_len=128, num_labels=100)
|
|
@ -17,4 +17,4 @@ requests==2.27.1 # downgrade to avoid huggingface error https://github.com/huggi
|
||||||
SentencePiece
|
SentencePiece
|
||||||
ninja
|
ninja
|
||||||
flash_attn==2.0.5
|
flash_attn==2.0.5
|
||||||
datasets
|
datasets
|
Loading…
Reference in New Issue