mirror of https://github.com/hpcaitech/ColossalAI
[zero] solve hang
parent
b5bfeb2efd
commit
13b48ac0aa
|
@ -30,6 +30,7 @@ class MoeHybridParallelZeroOptimizer(LowLevelZeroOptimizer):
|
||||||
optimizer: Optimizer,
|
optimizer: Optimizer,
|
||||||
model: Module,
|
model: Module,
|
||||||
use_pipeline: bool,
|
use_pipeline: bool,
|
||||||
|
force_overlap_comm: bool, # force overlap comm
|
||||||
dp_process_group: ProcessGroup, # dp pg for comm
|
dp_process_group: ProcessGroup, # dp pg for comm
|
||||||
moe_dp_group: ProcessGroup, # moe dp pg for comm
|
moe_dp_group: ProcessGroup, # moe dp pg for comm
|
||||||
param_info: OrderedDict,
|
param_info: OrderedDict,
|
||||||
|
@ -49,6 +50,15 @@ class MoeHybridParallelZeroOptimizer(LowLevelZeroOptimizer):
|
||||||
cpu_offload: bool = False, # cpu offload
|
cpu_offload: bool = False, # cpu offload
|
||||||
forced_dtype: Optional[torch.dtype] = None,
|
forced_dtype: Optional[torch.dtype] = None,
|
||||||
):
|
):
|
||||||
|
|
||||||
|
WARN_STR = "Note that you need to make sure every expert are routed (i.e.) every expert has backward, otherwise this might lead to program hang or inconsistent result"
|
||||||
|
if not force_overlap_comm and (overlap_communication or partition_grad):
|
||||||
|
raise RuntimeError(WARN_STR + " If you are not sure about this, set (overlap_communication=False and partition_grad=False) or force_overlap_comm=True")
|
||||||
|
|
||||||
|
if force_overlap_comm:
|
||||||
|
overlap_communication = True
|
||||||
|
warnings.warn(WARN_STR + " Please make sure of this.")
|
||||||
|
|
||||||
self.param_info = param_info
|
self.param_info = param_info
|
||||||
self.stage_manager = model.stage_manager
|
self.stage_manager = model.stage_manager
|
||||||
self.shared_params = model.shared_params
|
self.shared_params = model.shared_params
|
||||||
|
@ -88,7 +98,7 @@ class MoeHybridParallelPlugin(HybridParallelPlugin):
|
||||||
TODO: add docstring
|
TODO: add docstring
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self, ep_size: int, moe_tp_size: int = 1, *args, **kwargs) -> None:
|
def __init__(self, ep_size: int, moe_tp_size: int = 1, force_overlap_comm=False, *args, **kwargs) -> None:
|
||||||
super().__init__(*args, **kwargs)
|
super().__init__(*args, **kwargs)
|
||||||
|
|
||||||
self.use_ddp = self.dp_size > 1 and self.pp_size == 1 and self.zero_stage == 0
|
self.use_ddp = self.dp_size > 1 and self.pp_size == 1 and self.zero_stage == 0
|
||||||
|
@ -120,6 +130,8 @@ class MoeHybridParallelPlugin(HybridParallelPlugin):
|
||||||
# TODO do it in a better way
|
# TODO do it in a better way
|
||||||
self.shard_config.ep_group = self.ep_group
|
self.shard_config.ep_group = self.ep_group
|
||||||
|
|
||||||
|
self.force_overlap_comm = force_overlap_comm
|
||||||
|
|
||||||
def get_checkpoint_io(self) -> MoECheckpointIO:
|
def get_checkpoint_io(self) -> MoECheckpointIO:
|
||||||
return MoECheckpointIO(
|
return MoECheckpointIO(
|
||||||
self.dp_group, self.pp_group, self.tp_group, self.ep_group, self.moe_dp_group, self.zero_stage
|
self.dp_group, self.pp_group, self.tp_group, self.ep_group, self.moe_dp_group, self.zero_stage
|
||||||
|
@ -168,11 +180,16 @@ class MoeHybridParallelPlugin(HybridParallelPlugin):
|
||||||
optimizer, model, use_pipeline=self.enable_pipeline_parallelism, param_info=param_info
|
optimizer, model, use_pipeline=self.enable_pipeline_parallelism, param_info=param_info
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
assert self.dp_size > 1, "Please use Zero when data parallel size is greater than 1."
|
if not(self.dp_size > 1 or self.moe_dp_size > 1):
|
||||||
|
warnings.warn(
|
||||||
|
"Use Zero Optimizer when data parallel size is 1 may introduce unnecessary overhead. "
|
||||||
|
"If you do not intend to use cpu_offload, please consider set zero_stage=0."
|
||||||
|
)
|
||||||
optimizer = MoeHybridParallelZeroOptimizer(
|
optimizer = MoeHybridParallelZeroOptimizer(
|
||||||
optimizer,
|
optimizer,
|
||||||
model,
|
model,
|
||||||
use_pipeline=self.enable_pipeline_parallelism,
|
use_pipeline=self.enable_pipeline_parallelism,
|
||||||
|
force_overlap_comm=self.force_overlap_comm,
|
||||||
param_info=param_info,
|
param_info=param_info,
|
||||||
dp_process_group=self.dp_group,
|
dp_process_group=self.dp_group,
|
||||||
moe_dp_group=self.moe_dp_group,
|
moe_dp_group=self.moe_dp_group,
|
||||||
|
|
|
@ -110,12 +110,8 @@ class BucketStore(BaseStore):
|
||||||
|
|
||||||
flat_grad = []
|
flat_grad = []
|
||||||
for grad_list in self._grad_in_bucket.values():
|
for grad_list in self._grad_in_bucket.values():
|
||||||
if len(grad_list) > 0:
|
|
||||||
flat_grad.append(_flatten_dense_tensors(grad_list))
|
flat_grad.append(_flatten_dense_tensors(grad_list))
|
||||||
if len(flat_grad) > 0:
|
|
||||||
flat_grad = _flatten_dense_tensors(flat_grad)
|
flat_grad = _flatten_dense_tensors(flat_grad)
|
||||||
else:
|
|
||||||
flat_grad = torch.tensor([], device=self.comm_stream.device, dtype=dtype)
|
|
||||||
return flat_grad
|
return flat_grad
|
||||||
|
|
||||||
def get_param_id_of_grad(self, grad: Tensor) -> int:
|
def get_param_id_of_grad(self, grad: Tensor) -> int:
|
||||||
|
|
|
@ -19,7 +19,6 @@ class GradientStore(BaseStore):
|
||||||
"""
|
"""
|
||||||
self._grads_of_params = dict()
|
self._grads_of_params = dict()
|
||||||
# stage 2
|
# stage 2
|
||||||
self._partition_grads = partition_grad
|
|
||||||
self._working_index = 0 if partition_grad else self._local_rank
|
self._working_index = 0 if partition_grad else self._local_rank
|
||||||
# for zero2, it's `param_id: [grad_local_rank]`
|
# for zero2, it's `param_id: [grad_local_rank]`
|
||||||
self.grad_to_param_mapping = dict()
|
self.grad_to_param_mapping = dict()
|
||||||
|
|
|
@ -648,7 +648,11 @@ class LowLevelZeroOptimizer(OptimizerWrapper):
|
||||||
for group_id in range(self.num_param_groups):
|
for group_id in range(self.num_param_groups):
|
||||||
param_group = self._working_param_groups[group_id]
|
param_group = self._working_param_groups[group_id]
|
||||||
for param in param_group:
|
for param in param_group:
|
||||||
if param.requires_grad and param.grad is not None:
|
if param.requires_grad:
|
||||||
|
if param.grad is None:
|
||||||
|
# for moe params, all experts should have gradient
|
||||||
|
# TODO better way of doing this
|
||||||
|
param.grad = torch.zeros_like(param)
|
||||||
self._add_to_bucket(param, group_id)
|
self._add_to_bucket(param, group_id)
|
||||||
|
|
||||||
self._run_reduction()
|
self._run_reduction()
|
||||||
|
|
|
@ -137,7 +137,7 @@ def sync_local_from_ep(local_model, ep_model, assert_grad_flag: bool = False) ->
|
||||||
local_param.data.copy_(all_param.data)
|
local_param.data.copy_(all_param.data)
|
||||||
|
|
||||||
|
|
||||||
def loose_close(a, b, dtype: torch.dtype = torch.float32):
|
def loose_close(a, b, dtype: torch.dtype = torch.float32, name=""):
|
||||||
rtol = None
|
rtol = None
|
||||||
atol = None
|
atol = None
|
||||||
if dtype is torch.float16:
|
if dtype is torch.float16:
|
||||||
|
@ -150,4 +150,4 @@ def loose_close(a, b, dtype: torch.dtype = torch.float32):
|
||||||
a = a.detach().to(dtype)
|
a = a.detach().to(dtype)
|
||||||
b = b.detach().to(dtype).to(a.device)
|
b = b.detach().to(dtype).to(a.device)
|
||||||
|
|
||||||
assert_close(a, b, rtol=rtol, atol=atol)
|
assert torch.allclose(a, b, rtol=rtol, atol=atol), f"{name} not close {a.mean()} {b.mean()}"
|
||||||
|
|
|
@ -1,238 +1,134 @@
|
||||||
import os
|
from copy import deepcopy
|
||||||
import warnings
|
|
||||||
from typing import Dict
|
|
||||||
|
|
||||||
import pytest
|
import pytest
|
||||||
import torch
|
import torch
|
||||||
import torch.distributed as dist
|
import torch.distributed as dist
|
||||||
|
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||||
|
from transformers.models.mixtral.configuration_mixtral import MixtralConfig
|
||||||
|
from transformers.models.mixtral.modeling_mixtral import MixtralModel
|
||||||
|
|
||||||
import colossalai
|
import colossalai
|
||||||
from colossalai.accelerator import get_accelerator
|
from colossalai.booster.booster import Booster
|
||||||
from colossalai.moe.manager import MOE_MANAGER
|
from colossalai.booster.plugin.moe_hybrid_parallel_plugin import MoeHybridParallelPlugin
|
||||||
from colossalai.moe.utils import sync_moe_model_param
|
from colossalai.booster.plugin import HybridParallelPlugin
|
||||||
|
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
|
||||||
|
from colossalai.testing.random import seed_all
|
||||||
|
from tests.test_moe.moe_utils import loose_close
|
||||||
|
|
||||||
# from colossalai.shardformer.layer import SparseMLP
|
NUM_BATCH=4
|
||||||
from colossalai.tensor.moe_tensor.api import get_ep_group, get_ep_rank, get_ep_size, is_moe_tensor
|
NUM_TOK_PER_BATCH, NUM_EXPERTS = 7, 4
|
||||||
from colossalai.testing import assert_equal_in_group, rerun_if_address_is_in_use, spawn
|
HIDDEN_SIZE_PER_HEAD = 4
|
||||||
from tests.test_moe.moe_utils import MoeGradientHandler
|
NUM_HEADS=2
|
||||||
|
TOP_K = 2
|
||||||
|
|
||||||
|
|
||||||
def sync_tp_from_local(tp_model, local_model, assert_grad_flag: bool = False) -> None:
|
def split_grad(grad, world_size):
|
||||||
"""Sync the parameters of tp model from local model
|
with torch.no_grad():
|
||||||
|
grad = grad.clone().detach().flatten()
|
||||||
|
padding_size = (world_size - grad.numel() % world_size) % world_size
|
||||||
|
if padding_size > 0:
|
||||||
|
grad = torch.nn.functional.pad(grad, [0, padding_size])
|
||||||
|
splited_grad = grad.split(grad.numel() // world_size)
|
||||||
|
return splited_grad
|
||||||
|
|
||||||
Args:
|
|
||||||
tp_model (MoeModule)
|
@parameterize("stage", [1])
|
||||||
local_model (MoeModule)
|
@parameterize("ep_size", [1, 2, 4])
|
||||||
"""
|
@parameterize("tp_size", [1, 2, 4])
|
||||||
for (tp_name, tp_param), (local_name, local_param) in zip(
|
def run_zero_with_original_model(stage: int, ep_size: int, tp_size: int=1):
|
||||||
tp_model.named_parameters(), local_model.named_parameters()
|
dtype = torch.bfloat16
|
||||||
):
|
|
||||||
assert tp_name == local_name
|
rank = torch.distributed.get_rank()
|
||||||
if not is_moe_tensor(tp_param):
|
torch.cuda.set_device(dist.get_rank())
|
||||||
if assert_grad_flag:
|
|
||||||
assert torch.allclose(tp_param, local_param)
|
seed_all(10086)
|
||||||
assert torch.allclose(tp_param.grad, local_param.grad)
|
|
||||||
else:
|
config = MixtralConfig(
|
||||||
tp_param.data.copy_(local_param.data)
|
hidden_size=HIDDEN_SIZE_PER_HEAD * NUM_HEADS,
|
||||||
|
intermediate_size=HIDDEN_SIZE_PER_HEAD * NUM_HEADS * 2,
|
||||||
|
num_hidden_layers=2,
|
||||||
|
num_attention_heads=NUM_HEADS,
|
||||||
|
num_key_value_heads=NUM_HEADS,
|
||||||
|
num_local_experts=NUM_EXPERTS,
|
||||||
|
num_experts_per_tok=TOP_K,
|
||||||
|
)
|
||||||
|
torch_model = MixtralModel(config).to(dtype).cuda()
|
||||||
|
|
||||||
|
zero_model = deepcopy(torch_model).to(dtype)
|
||||||
|
zero_optimizer = torch.optim.SGD(zero_model.parameters(), lr=1)
|
||||||
|
booster = Booster(
|
||||||
|
plugin=MoeHybridParallelPlugin(
|
||||||
|
tp_size=tp_size,
|
||||||
|
pp_size=1,
|
||||||
|
ep_size=ep_size,
|
||||||
|
zero_stage=stage,
|
||||||
|
overlap_communication=False,
|
||||||
|
initial_scale=1
|
||||||
|
)
|
||||||
|
)
|
||||||
|
zero_model, zero_optimizer, _, _, _ = booster.boost(zero_model, zero_optimizer)
|
||||||
|
|
||||||
|
booster = Booster(
|
||||||
|
plugin=HybridParallelPlugin(
|
||||||
|
tp_size=tp_size,
|
||||||
|
pp_size=1,
|
||||||
|
zero_stage=stage,
|
||||||
|
overlap_communication=False,
|
||||||
|
initial_scale=1,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
hybrid_model, hybrid_optimizer, _, _, _ = booster.boost(torch_model, torch.optim.SGD(torch_model.parameters(), lr=1))
|
||||||
|
|
||||||
|
# create different input
|
||||||
|
seed_all(1453 + rank)
|
||||||
|
|
||||||
|
hybrid_model.train()
|
||||||
|
zero_model.train()
|
||||||
|
for _ in range(2):
|
||||||
|
# zero-dp forward
|
||||||
|
input_data = torch.rand(NUM_BATCH, NUM_TOK_PER_BATCH, HIDDEN_SIZE_PER_HEAD * NUM_HEADS, requires_grad=True).cuda()
|
||||||
|
zero_output = zero_model(inputs_embeds=input_data.to(dtype)).last_hidden_state.mean()
|
||||||
|
# zero-dp backward
|
||||||
|
zero_optimizer.backward(zero_output)
|
||||||
|
# torch-ddp forward
|
||||||
|
hybrid_output = hybrid_model(inputs_embeds=input_data.to(dtype)).last_hidden_state.mean()
|
||||||
|
loose_close(zero_output, hybrid_output, dtype=dtype)
|
||||||
|
# torch-ddp backward
|
||||||
|
hybrid_optimizer.backward(hybrid_output)
|
||||||
|
|
||||||
|
# check grad
|
||||||
|
name_to_p = {n: p for n, p in hybrid_model.named_parameters()}
|
||||||
|
for n, p in zero_model.named_parameters():
|
||||||
|
zero_grad = zero_optimizer.get_param_grad(p)
|
||||||
|
if name_to_p[n].grad is None:
|
||||||
|
name_to_p[n].grad = torch.zeros_like(name_to_p[n])
|
||||||
continue
|
continue
|
||||||
|
loose_close(zero_grad, name_to_p[n].grad, dtype=dtype, name=n)
|
||||||
|
|
||||||
tp_rank = get_ep_rank(tp_param)
|
# zero-dp step
|
||||||
tp_dim = [i for i, (d1, d2) in enumerate(zip(tp_param.shape, local_param.shape)) if d1 != d2][0]
|
zero_optimizer.step()
|
||||||
tp_slice = [slice(None)] * tp_dim + [
|
|
||||||
slice(tp_param.shape[tp_dim] * tp_rank, tp_param.shape[tp_dim] * (tp_rank + 1))
|
|
||||||
]
|
|
||||||
|
|
||||||
if assert_grad_flag:
|
# original model step
|
||||||
assert torch.allclose(tp_param, local_param[tuple(tp_slice)])
|
hybrid_optimizer.step()
|
||||||
assert torch.allclose(tp_param.grad, local_param.grad[tuple(tp_slice)])
|
|
||||||
else:
|
# check updated param
|
||||||
tp_param.data.copy_(local_param[tuple(tp_slice)].data)
|
for n, p in zero_model.named_parameters():
|
||||||
|
loose_close(p.data, name_to_p[n].data, dtype=dtype, name=n)
|
||||||
|
|
||||||
|
print(f"{dist.get_rank()} test passed")
|
||||||
|
|
||||||
|
|
||||||
def sync_tp_from_ep(tp_model, ep_model, assert_grad_flag: bool = False) -> None:
|
def run_dist(rank, world_size, port):
|
||||||
"""Sync the parameters of tp model from ep model
|
|
||||||
|
|
||||||
Args:
|
|
||||||
tp_model (MoeModule)
|
|
||||||
ep_model (MoeModule)
|
|
||||||
"""
|
|
||||||
for (tp_name, tp_param), (ep_name, ep_param) in zip(tp_model.named_parameters(), ep_model.named_parameters()):
|
|
||||||
assert tp_name == ep_name
|
|
||||||
if not is_moe_tensor(tp_param):
|
|
||||||
if assert_grad_flag:
|
|
||||||
assert torch.allclose(tp_param, ep_param)
|
|
||||||
assert torch.allclose(tp_param.grad, ep_param.grad)
|
|
||||||
else:
|
|
||||||
tp_param.data.copy_(ep_param.data)
|
|
||||||
continue
|
|
||||||
|
|
||||||
# gather param from ep model
|
|
||||||
param_list = [torch.zeros_like(ep_param) for _ in range(get_ep_size(ep_param))]
|
|
||||||
dist.all_gather(param_list, ep_param, group=get_ep_group(ep_param))
|
|
||||||
all_param = torch.cat(param_list, dim=0)
|
|
||||||
if assert_grad_flag:
|
|
||||||
grad_list = [torch.zeros_like(ep_param) for _ in range(get_ep_size(ep_param))]
|
|
||||||
dist.all_gather(grad_list, ep_param.grad, group=get_ep_group(ep_param))
|
|
||||||
all_grad = torch.cat(grad_list, dim=0)
|
|
||||||
|
|
||||||
# get tp param
|
|
||||||
tp_dim = [i for i, (d1, d2) in enumerate(zip(tp_param.shape[1:], all_param.shape[1:])) if d1 != d2][0] + 1
|
|
||||||
tp_rank = get_ep_rank(tp_param)
|
|
||||||
tp_slice = [slice(None)] * tp_dim + [
|
|
||||||
slice(tp_param.shape[tp_dim] * tp_rank, tp_param.shape[tp_dim] * (tp_rank + 1))
|
|
||||||
]
|
|
||||||
new_tp_param = all_param[tuple(tp_slice)]
|
|
||||||
if assert_grad_flag:
|
|
||||||
new_grad = all_grad[tuple(tp_slice)]
|
|
||||||
if assert_grad_flag:
|
|
||||||
assert torch.allclose(tp_param, new_tp_param)
|
|
||||||
assert torch.allclose(tp_param.grad, new_grad)
|
|
||||||
else:
|
|
||||||
tp_param.data.copy_(new_tp_param.data)
|
|
||||||
|
|
||||||
|
|
||||||
def sync_local_from_ep(local_model, ep_model, assert_grad_flag: bool = False) -> None:
|
|
||||||
"""Sync the parameters of tp model from ep model
|
|
||||||
|
|
||||||
Args:
|
|
||||||
local_model (MoeModule)
|
|
||||||
ep_model (MoeModule)
|
|
||||||
"""
|
|
||||||
for (local_name, local_param), (ep_name, ep_param) in zip(
|
|
||||||
local_model.named_parameters(), ep_model.named_parameters()
|
|
||||||
):
|
|
||||||
assert local_name == ep_name
|
|
||||||
if "experts" not in local_name:
|
|
||||||
if assert_grad_flag:
|
|
||||||
assert torch.allclose(local_param, ep_param)
|
|
||||||
assert torch.allclose(local_param.grad, ep_param.grad)
|
|
||||||
else:
|
|
||||||
local_param.data.copy_(ep_param.data)
|
|
||||||
continue
|
|
||||||
|
|
||||||
# gather param from ep model
|
|
||||||
param_list = [torch.zeros_like(ep_param) for _ in range(get_ep_size(ep_param))]
|
|
||||||
dist.all_gather(param_list, ep_param, group=get_ep_group(ep_param))
|
|
||||||
all_param = torch.cat(param_list, dim=0)
|
|
||||||
if assert_grad_flag:
|
|
||||||
grad_list = [torch.zeros_like(ep_param) for _ in range(get_ep_size(ep_param))]
|
|
||||||
dist.all_gather(grad_list, ep_param.grad, group=get_ep_group(ep_param))
|
|
||||||
all_grad = torch.cat(grad_list, dim=0)
|
|
||||||
|
|
||||||
if assert_grad_flag:
|
|
||||||
assert torch.allclose(local_param, all_param)
|
|
||||||
assert torch.allclose(local_param.grad, all_grad)
|
|
||||||
else:
|
|
||||||
local_param.data.copy_(all_param.data)
|
|
||||||
|
|
||||||
|
|
||||||
def run_test(rank: int, world_size: int, port: int, num_experts: int, batch_size: int, dim: int, config: Dict):
|
|
||||||
assert batch_size % world_size == 0
|
|
||||||
|
|
||||||
colossalai.launch(rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
|
colossalai.launch(rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
|
||||||
|
run_zero_with_original_model()
|
||||||
MOE_MANAGER.__init__()
|
|
||||||
MOE_MANAGER.setup(parallel=None)
|
|
||||||
local_model = SparseMLP(num_experts=num_experts, hidden_size=dim, intermediate_size=dim * 2)
|
|
||||||
MOE_MANAGER.__init__()
|
|
||||||
MOE_MANAGER.setup(parallel="EP")
|
|
||||||
enable_hierarchical_comm = config.get("enable_hierarchical_comm", False)
|
|
||||||
if enable_hierarchical_comm:
|
|
||||||
os.environ["LOCAL_WORLD_SIZE"] = str(world_size)
|
|
||||||
ep_model = SparseMLP(
|
|
||||||
num_experts=num_experts,
|
|
||||||
hidden_size=dim,
|
|
||||||
intermediate_size=dim * 2,
|
|
||||||
enable_hierarchical_comm=enable_hierarchical_comm,
|
|
||||||
)
|
|
||||||
MOE_MANAGER.__init__()
|
|
||||||
MOE_MANAGER.setup(parallel="TP")
|
|
||||||
tp_model = SparseMLP(num_experts=num_experts, hidden_size=dim, intermediate_size=dim * 2)
|
|
||||||
ep_model = ep_model.to(get_accelerator().get_current_device())
|
|
||||||
tp_model = tp_model.to(get_accelerator().get_current_device())
|
|
||||||
local_model = local_model.to(get_accelerator().get_current_device())
|
|
||||||
|
|
||||||
# sync ep param
|
|
||||||
sync_moe_model_param(ep_model)
|
|
||||||
dist_dict = MOE_MANAGER.parallel_info_dict
|
|
||||||
assert_equal_in_group(ep_model.experts.wi.data, dist_dict[world_size].dp_group)
|
|
||||||
assert_equal_in_group(ep_model.experts.wo.data, dist_dict[world_size].dp_group)
|
|
||||||
ep_grad_handler = MoeGradientHandler(ep_model)
|
|
||||||
# sync local param
|
|
||||||
sync_local_from_ep(local_model, ep_model)
|
|
||||||
# sync tp param
|
|
||||||
sync_tp_from_ep(tp_model, ep_model)
|
|
||||||
tp_grad_handler = MoeGradientHandler(tp_model)
|
|
||||||
|
|
||||||
rank = dist.get_rank()
|
|
||||||
input_data = torch.randn(batch_size, dim, device=get_accelerator().get_current_device())
|
|
||||||
micro_batch_size = batch_size // world_size
|
|
||||||
index = rank * micro_batch_size
|
|
||||||
# NOTE: ep & tp takes in sharded data for each process
|
|
||||||
shard_data = input_data.detach()[index : index + micro_batch_size]
|
|
||||||
|
|
||||||
out_local = local_model(input_data)
|
|
||||||
MOE_MANAGER.reset_loss()
|
|
||||||
out_tp = tp_model(shard_data)
|
|
||||||
MOE_MANAGER.reset_loss()
|
|
||||||
out_ep = ep_model(shard_data)
|
|
||||||
MOE_MANAGER.reset_loss()
|
|
||||||
|
|
||||||
assert torch.allclose(
|
|
||||||
out_tp, out_ep, atol=1e-6
|
|
||||||
), f"Rank {rank} failed, max diff: {torch.max(torch.abs(out_tp - out_ep))}"
|
|
||||||
try:
|
|
||||||
out_local_slice = out_local[index : index + micro_batch_size]
|
|
||||||
assert torch.allclose(
|
|
||||||
out_ep, out_local_slice, atol=1e-6
|
|
||||||
), f"Rank {rank} failed, max diff: {torch.max(torch.abs(out_ep - out_local_slice))}"
|
|
||||||
except AssertionError:
|
|
||||||
"""
|
|
||||||
e.g., in local model, tokens = 4, capacity = 2, experts = 2, topk = 1
|
|
||||||
router yields [01] --> [0], [23] --> [1], this is valid as capacity is 2
|
|
||||||
However, in ep mode, there are 2 separate routers dealing with sharded data.
|
|
||||||
Assume router 0 handles token [01] and router 1 handles token [23].
|
|
||||||
Note that for each router the capacity is only 1 !!!
|
|
||||||
Thus, router 0 may yields [0] --> [0] or [1] --> [0], but not both.
|
|
||||||
The same thing happens on router 1. And finally some tokens are dropped due to the sharded nature.
|
|
||||||
"""
|
|
||||||
warnings.warn(
|
|
||||||
"EP & TP may result in different behavior from local model. " "Please check the comments for details."
|
|
||||||
)
|
|
||||||
|
|
||||||
out_local.mean().backward()
|
|
||||||
out_tp.mean().backward()
|
|
||||||
tp_grad_handler.handle_gradient()
|
|
||||||
out_ep.mean().backward()
|
|
||||||
ep_grad_handler.handle_gradient()
|
|
||||||
|
|
||||||
assert_equal_in_group(ep_model.experts.wi.grad, dist_dict[world_size].dp_group)
|
|
||||||
assert_equal_in_group(ep_model.experts.wo.grad, dist_dict[world_size].dp_group)
|
|
||||||
sync_tp_from_ep(tp_model, ep_model, assert_grad_flag=True)
|
|
||||||
try:
|
|
||||||
sync_local_from_ep(local_model, ep_model, assert_grad_flag=True)
|
|
||||||
except AssertionError:
|
|
||||||
warnings.warn(
|
|
||||||
"EP & TP may result in different behavior from local model. " "Please check the comments for details."
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.skip(reason="moe need to be refactored")
|
|
||||||
@pytest.mark.dist
|
@pytest.mark.dist
|
||||||
@pytest.mark.parametrize("num_experts", [4, 64])
|
@pytest.mark.parametrize("world_size", [4])
|
||||||
@pytest.mark.parametrize("batch_size", [16])
|
|
||||||
@pytest.mark.parametrize("dim", [64])
|
|
||||||
@pytest.mark.parametrize(
|
|
||||||
"config",
|
|
||||||
[
|
|
||||||
{"enable_hierarchical_comm": False},
|
|
||||||
{"enable_hierarchical_comm": True},
|
|
||||||
],
|
|
||||||
)
|
|
||||||
@rerun_if_address_is_in_use()
|
@rerun_if_address_is_in_use()
|
||||||
def test_moe_ep_tp(num_experts: int, batch_size: int, dim: int, config: Dict):
|
def test_moe_ep_tp(world_size):
|
||||||
spawn(run_test, 2, num_experts=num_experts, batch_size=batch_size, dim=dim, config=config)
|
spawn(run_dist, world_size)
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
test_moe_ep_tp(num_experts=8, batch_size=32, dim=32)
|
test_moe_ep_tp(world_size=4)
|
||||||
|
|
|
@ -5,20 +5,20 @@ import torch
|
||||||
import torch.distributed as dist
|
import torch.distributed as dist
|
||||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||||
from transformers.models.mixtral.configuration_mixtral import MixtralConfig
|
from transformers.models.mixtral.configuration_mixtral import MixtralConfig
|
||||||
from transformers.models.mixtral.modeling_mixtral import MixtralSparseMoeBlock
|
from transformers.models.mixtral.modeling_mixtral import MixtralModel
|
||||||
|
|
||||||
import colossalai
|
import colossalai
|
||||||
|
from colossalai.booster.booster import Booster
|
||||||
from colossalai.booster.plugin.moe_hybrid_parallel_plugin import MoeHybridParallelPlugin
|
from colossalai.booster.plugin.moe_hybrid_parallel_plugin import MoeHybridParallelPlugin
|
||||||
from colossalai.shardformer.modeling.mixtral import EPMixtralSparseMoeBlock
|
|
||||||
from colossalai.tensor.moe_tensor.api import is_moe_tensor
|
|
||||||
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
|
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
|
||||||
from colossalai.testing.random import seed_all
|
from colossalai.testing.random import seed_all
|
||||||
from colossalai.zero import LowLevelZeroOptimizer
|
|
||||||
from tests.test_moe.moe_utils import loose_close
|
from tests.test_moe.moe_utils import loose_close
|
||||||
|
|
||||||
tokens, n_experts = 7, 4
|
NUM_BATCH=4
|
||||||
hidden_size = 8
|
NUM_TOK_PER_BATCH, NUM_EXPERTS = 7, 4
|
||||||
top_k = 2
|
HIDDEN_SIZE_PER_HEAD = 4
|
||||||
|
NUM_HEADS=2
|
||||||
|
TOP_K = 2
|
||||||
|
|
||||||
|
|
||||||
def split_grad(grad, world_size):
|
def split_grad(grad, world_size):
|
||||||
|
@ -31,94 +31,87 @@ def split_grad(grad, world_size):
|
||||||
return splited_grad
|
return splited_grad
|
||||||
|
|
||||||
|
|
||||||
@parameterize("stage", [1, 2])
|
@parameterize("stage", [1])
|
||||||
@parameterize("ep_size", [1, 2, 4])
|
@parameterize("ep_size", [1, 2, 4])
|
||||||
def run_zero_with_original_model(stage: int, ep_size: int):
|
def run_zero_with_original_model(stage: int, ep_size: int):
|
||||||
dtype = torch.float16
|
dtype = torch.bfloat16
|
||||||
|
|
||||||
rank = torch.distributed.get_rank()
|
rank = torch.distributed.get_rank()
|
||||||
torch.cuda.set_device(dist.get_rank())
|
torch.cuda.set_device(dist.get_rank())
|
||||||
|
|
||||||
plugin = MoeHybridParallelPlugin(
|
plugin = MoeHybridParallelPlugin(
|
||||||
tp_size=1,
|
|
||||||
pp_size=1,
|
pp_size=1,
|
||||||
|
tp_size=1,
|
||||||
ep_size=ep_size,
|
ep_size=ep_size,
|
||||||
|
zero_stage=stage,
|
||||||
|
overlap_communication=False,
|
||||||
|
initial_scale=1
|
||||||
)
|
)
|
||||||
|
booster = Booster(plugin=plugin)
|
||||||
|
|
||||||
seed_all(10086)
|
seed_all(10086)
|
||||||
|
|
||||||
config = MixtralConfig(
|
config = MixtralConfig(
|
||||||
hidden_size=hidden_size,
|
hidden_size=HIDDEN_SIZE_PER_HEAD * NUM_HEADS,
|
||||||
intermediate_size=hidden_size * 2,
|
intermediate_size=HIDDEN_SIZE_PER_HEAD * NUM_HEADS * 2,
|
||||||
num_local_experts=n_experts,
|
num_hidden_layers=2,
|
||||||
num_experts_per_tok=top_k,
|
num_attention_heads=NUM_HEADS,
|
||||||
|
num_key_value_heads=NUM_HEADS,
|
||||||
|
num_local_experts=NUM_EXPERTS,
|
||||||
|
num_experts_per_tok=TOP_K,
|
||||||
)
|
)
|
||||||
|
|
||||||
orig_model = MixtralSparseMoeBlock(config).to(dtype).cuda()
|
torch_model = MixtralModel(config).to(dtype).cuda()
|
||||||
|
|
||||||
ori_model = DDP(
|
zero_model = deepcopy(torch_model).to(dtype)
|
||||||
orig_model.cuda(),
|
zero_optimizer = torch.optim.SGD(zero_model.parameters(), lr=1)
|
||||||
|
|
||||||
|
zero_model, zero_optimizer, _, _, _ = booster.boost(zero_model, zero_optimizer)
|
||||||
|
|
||||||
|
ddp_model = DDP(
|
||||||
|
torch_model.cuda(),
|
||||||
process_group=plugin.dp_group,
|
process_group=plugin.dp_group,
|
||||||
find_unused_parameters=True, # important for torch ddp, not all experts are routed
|
find_unused_parameters=True, # important for torch ddp, not all experts are routed
|
||||||
).cuda()
|
).cuda()
|
||||||
|
ddp_optimizer = torch.optim.SGD(ddp_model.parameters(), lr=1)
|
||||||
|
|
||||||
zero_model = deepcopy(orig_model).to(dtype)
|
# create different input
|
||||||
zero_model = EPMixtralSparseMoeBlock.from_native_module(zero_model, ep_group=plugin.ep_group)
|
|
||||||
|
|
||||||
zero_optimizer = torch.optim.SGD(zero_model.parameters(), lr=1)
|
|
||||||
pg_param_list = {plugin.dp_group: [], plugin.moe_dp_group: []}
|
|
||||||
for p in zero_model.parameters():
|
|
||||||
if is_moe_tensor(p):
|
|
||||||
pg_param_list[plugin.moe_dp_group].append(p)
|
|
||||||
else:
|
|
||||||
pg_param_list[plugin.dp_group].append(p)
|
|
||||||
|
|
||||||
zero_optimizer = LowLevelZeroOptimizer(
|
|
||||||
zero_optimizer,
|
|
||||||
pg_to_param_list=pg_param_list,
|
|
||||||
master_weights=False,
|
|
||||||
initial_scale=1,
|
|
||||||
overlap_communication=True,
|
|
||||||
partition_grad=stage == 2,
|
|
||||||
)
|
|
||||||
|
|
||||||
ori_optimizer = torch.optim.SGD(ori_model.parameters(), lr=1)
|
|
||||||
|
|
||||||
# create
|
|
||||||
seed_all(1453 + rank)
|
seed_all(1453 + rank)
|
||||||
|
|
||||||
|
ddp_model.train()
|
||||||
|
zero_model.train()
|
||||||
for _ in range(2):
|
for _ in range(2):
|
||||||
# zero-dp forward
|
# zero-dp forward
|
||||||
input_data = torch.rand(1, tokens, hidden_size, requires_grad=True).cuda()
|
input_data = torch.rand(NUM_BATCH, NUM_TOK_PER_BATCH, HIDDEN_SIZE_PER_HEAD * NUM_HEADS, requires_grad=True).cuda()
|
||||||
zero_output, _ = zero_model(input_data.to(dtype))
|
zero_output = zero_model(inputs_embeds=input_data.to(dtype)).last_hidden_state.mean()
|
||||||
|
# zero-dp backward
|
||||||
|
zero_optimizer.backward(zero_output)
|
||||||
|
|
||||||
# torch-ddp forward
|
# torch-ddp forward
|
||||||
ori_output, _ = ori_model(input_data.to(dtype))
|
ddp_output = ddp_model(inputs_embeds=input_data.to(dtype)).last_hidden_state.mean()
|
||||||
loose_close(zero_output, ori_output, dtype=dtype)
|
loose_close(zero_output, ddp_output, dtype=dtype)
|
||||||
|
|
||||||
# zero-dp backward
|
|
||||||
zero_optimizer.backward(zero_output.mean().float())
|
|
||||||
|
|
||||||
# torch-ddp backward
|
# torch-ddp backward
|
||||||
ori_output.mean().backward()
|
ddp_output.backward()
|
||||||
|
|
||||||
# check grad
|
# check grad
|
||||||
name_to_p = {n: p for n, p in ori_model.module.named_parameters()}
|
name_to_p = {n: p for n, p in ddp_model.named_parameters()}
|
||||||
for n, p in zero_model.named_parameters():
|
for n, p in zero_model.named_parameters():
|
||||||
|
print(f"rank {dist.get_rank()} {n}")
|
||||||
zero_grad = zero_optimizer.get_param_grad(p)
|
zero_grad = zero_optimizer.get_param_grad(p)
|
||||||
if name_to_p[n].grad is None:
|
if name_to_p[n].grad is None:
|
||||||
assert zero_grad is None
|
name_to_p[n].grad = torch.zeros_like(name_to_p[n].data)
|
||||||
continue
|
continue
|
||||||
|
loose_close(zero_grad, name_to_p[n].grad, dtype=dtype, name=n)
|
||||||
loose_close(zero_grad, name_to_p[n].grad, dtype=dtype)
|
|
||||||
|
|
||||||
# zero-dp step
|
# zero-dp step
|
||||||
zero_optimizer.step()
|
zero_optimizer.step()
|
||||||
|
|
||||||
# original model step
|
# original model step
|
||||||
ori_optimizer.step()
|
ddp_optimizer.step()
|
||||||
|
|
||||||
# check updated param
|
# check updated param
|
||||||
for n, p in zero_model.named_parameters():
|
for n, p in zero_model.named_parameters():
|
||||||
loose_close(p.data, name_to_p[n].data, dtype=dtype)
|
loose_close(p.data, name_to_p[n].data, dtype=dtype, name=n)
|
||||||
|
|
||||||
print(f"{dist.get_rank()} test passed")
|
print(f"{dist.get_rank()} test passed")
|
||||||
|
|
||||||
|
@ -131,9 +124,9 @@ def run_dist(rank, world_size, port):
|
||||||
@pytest.mark.dist
|
@pytest.mark.dist
|
||||||
@pytest.mark.parametrize("world_size", [4])
|
@pytest.mark.parametrize("world_size", [4])
|
||||||
@rerun_if_address_is_in_use()
|
@rerun_if_address_is_in_use()
|
||||||
def test_moe_zero_model(world_size):
|
def test_moe_ep_tp(world_size):
|
||||||
spawn(run_dist, world_size)
|
spawn(run_dist, world_size)
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
test_moe_zero_model(world_size=4)
|
test_moe_ep_tp(world_size=4)
|
||||||
|
|
|
@ -113,65 +113,43 @@ def check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn,
|
||||||
@parameterize(
|
@parameterize(
|
||||||
"test_config",
|
"test_config",
|
||||||
[
|
[
|
||||||
{
|
|
||||||
"tp_size": 2,
|
|
||||||
"pp_size": 1,
|
|
||||||
"ep_size": 1,
|
|
||||||
"zero_stage": 2,
|
|
||||||
"precision": "fp32",
|
|
||||||
}, # [dp(2) + tp(2)] + [moe_dp(4)]
|
|
||||||
{
|
|
||||||
"tp_size": 2,
|
|
||||||
"pp_size": 1,
|
|
||||||
"ep_size": 2,
|
|
||||||
"zero_stage": 2,
|
|
||||||
"precision": "fp32",
|
|
||||||
}, # [dp(2) + tp(2)] + [ep(2) + moe_dp(2)]
|
|
||||||
{
|
{
|
||||||
"tp_size": 1,
|
"tp_size": 1,
|
||||||
"pp_size": 2,
|
"pp_size": 1,
|
||||||
"num_microbatches": 2,
|
|
||||||
"ep_size": 1,
|
"ep_size": 1,
|
||||||
"zero_stage": 2,
|
"zero_stage": 2,
|
||||||
"precision": "fp32",
|
"precision": "fp32",
|
||||||
}, # [dp(2) + pp(2)] + [moe_dp(4)]
|
}, # [dp(2) + pp(2)] + [moe_dp(4)]
|
||||||
{
|
# {
|
||||||
"tp_size": 1,
|
# "tp_size": 1,
|
||||||
"pp_size": 2,
|
# "pp_size": 2,
|
||||||
"num_microbatches": 2,
|
# "num_microbatches": 2,
|
||||||
"ep_size": 1,
|
# "ep_size": 1,
|
||||||
"zero_stage": 2,
|
# "zero_stage": 1,
|
||||||
"precision": "fp32",
|
# "precision": "fp32",
|
||||||
}, # [dp(2) + pp(2)] + [moe_dp(4)]
|
# }, # [dp(2) + pp(2)] + [moe_dp(4)]
|
||||||
{
|
# {
|
||||||
"tp_size": 1,
|
# "tp_size": 1,
|
||||||
"pp_size": 2,
|
# "pp_size": 2,
|
||||||
"num_microbatches": 2,
|
# "num_microbatches": 2,
|
||||||
"ep_size": 4,
|
# "ep_size": 4,
|
||||||
"zero_stage": 2,
|
# "zero_stage": 1,
|
||||||
"precision": "fp32",
|
# "precision": "fp32",
|
||||||
}, # [dp(2) + pp(2)] + [ep(4))]
|
# }, # [dp(2) + pp(2)] + [ep(4))]
|
||||||
{
|
# {
|
||||||
"tp_size": 1,
|
# "tp_size": 1,
|
||||||
"pp_size": 1,
|
# "pp_size": 1,
|
||||||
"ep_size": 2,
|
# "ep_size": 2,
|
||||||
"zero_stage": 2,
|
# "zero_stage": 0,
|
||||||
"precision": "fp32",
|
# "precision": "fp32",
|
||||||
}, # [dp(4)] + [ep(2) + moe_tp(2)]
|
# }, # [dp(4)] + [ep(2) + moe_tp(2)]
|
||||||
{
|
# {
|
||||||
"tp_size": 1,
|
# "tp_size": 1,
|
||||||
"pp_size": 1,
|
# "pp_size": 1,
|
||||||
"ep_size": 4,
|
# "ep_size": 4,
|
||||||
"zero_stage": 2,
|
# "zero_stage": 0,
|
||||||
"precision": "fp32"
|
# "precision": "fp32"
|
||||||
}, # full dp for non-moe and full ep for moe
|
# }, # full dp for non-moe and full ep for moe
|
||||||
{
|
|
||||||
"tp_size": 1,
|
|
||||||
"pp_size": 1,
|
|
||||||
"ep_size": 1,
|
|
||||||
"zero_stage": 2,
|
|
||||||
"precision": "fp32"
|
|
||||||
}, # full dp for moe and non-moe
|
|
||||||
],
|
],
|
||||||
)
|
)
|
||||||
def run_mixtral_test(test_config):
|
def run_mixtral_test(test_config):
|
||||||
|
|
Loading…
Reference in New Issue