|
|
@ -216,7 +216,7 @@ class HybridParallelModule(ModelWrapper, AMPModelMixin):
|
|
|
|
if self.convert_fn is not None:
|
|
|
|
if self.convert_fn is not None:
|
|
|
|
args = tree_map(self.convert_fn, args)
|
|
|
|
args = tree_map(self.convert_fn, args)
|
|
|
|
kwargs = tree_map(self.convert_fn, kwargs)
|
|
|
|
kwargs = tree_map(self.convert_fn, kwargs)
|
|
|
|
with self._wait_all_gather():
|
|
|
|
with self._hook_context():
|
|
|
|
return super().forward(*args, **kwargs)
|
|
|
|
return super().forward(*args, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
def unwrap(self):
|
|
|
|
def unwrap(self):
|
|
|
@ -229,12 +229,8 @@ class HybridParallelModule(ModelWrapper, AMPModelMixin):
|
|
|
|
for p in self.module.parameters():
|
|
|
|
for p in self.module.parameters():
|
|
|
|
wait_all_gather_handle(p)
|
|
|
|
wait_all_gather_handle(p)
|
|
|
|
|
|
|
|
|
|
|
|
def _wait_all_gather(self):
|
|
|
|
def _hook_context(self):
|
|
|
|
return (
|
|
|
|
return ColoParamOpHookManager.use_hooks(*self.op_hooks) if len(self.op_hooks) > 0 else nullcontext()
|
|
|
|
ColoParamOpHookManager.use_hooks(*self.op_hooks)
|
|
|
|
|
|
|
|
if (self.overlap_allgather or self.use_fp8)
|
|
|
|
|
|
|
|
else nullcontext()
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_param_info(optim: Optimizer):
|
|
|
|
def get_param_info(optim: Optimizer):
|
|
|
@ -317,7 +313,8 @@ class HybridParallelNaiveOptimizer(OptimizerWrapper):
|
|
|
|
"""
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
|
|
# Call the superclass backward method to compute gradients.
|
|
|
|
# Call the superclass backward method to compute gradients.
|
|
|
|
super().backward(loss, *args, **kwargs)
|
|
|
|
with self.model._hook_context():
|
|
|
|
|
|
|
|
super().backward(loss, *args, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
if self.model.require_grad_sync:
|
|
|
|
if self.model.require_grad_sync:
|
|
|
|
# If gradient synchronization is required, sync sequence parallelism gradients.
|
|
|
|
# If gradient synchronization is required, sync sequence parallelism gradients.
|
|
|
@ -540,7 +537,8 @@ class HybridParallelAMPOptimizer(MixedPrecisionOptimizer):
|
|
|
|
None
|
|
|
|
None
|
|
|
|
"""
|
|
|
|
"""
|
|
|
|
# Call the superclass backward method to compute gradients.
|
|
|
|
# Call the superclass backward method to compute gradients.
|
|
|
|
super().backward(loss, *args, **kwargs)
|
|
|
|
with self.model._hook_context():
|
|
|
|
|
|
|
|
super().backward(loss, *args, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
if self.model.require_grad_sync:
|
|
|
|
if self.model.require_grad_sync:
|
|
|
|
# If gradient synchronization is required, sync sequence parallelism gradients.
|
|
|
|
# If gradient synchronization is required, sync sequence parallelism gradients.
|
|
|
@ -683,6 +681,7 @@ class HybridParallelZeroOptimizer(LowLevelZeroOptimizer):
|
|
|
|
pp_process_group: Optional[ProcessGroup] = None, # if using pp
|
|
|
|
pp_process_group: Optional[ProcessGroup] = None, # if using pp
|
|
|
|
forced_dtype: Optional[torch.dtype] = None,
|
|
|
|
forced_dtype: Optional[torch.dtype] = None,
|
|
|
|
overlap_allgather: bool = False,
|
|
|
|
overlap_allgather: bool = False,
|
|
|
|
|
|
|
|
fp8_communication: bool = False,
|
|
|
|
):
|
|
|
|
):
|
|
|
|
self.model = model
|
|
|
|
self.model = model
|
|
|
|
self.param_info = param_info
|
|
|
|
self.param_info = param_info
|
|
|
@ -712,6 +711,8 @@ class HybridParallelZeroOptimizer(LowLevelZeroOptimizer):
|
|
|
|
dp_process_group=dp_process_group,
|
|
|
|
dp_process_group=dp_process_group,
|
|
|
|
forced_dtype=forced_dtype,
|
|
|
|
forced_dtype=forced_dtype,
|
|
|
|
overlap_allgather=overlap_allgather,
|
|
|
|
overlap_allgather=overlap_allgather,
|
|
|
|
|
|
|
|
fp8_communication=fp8_communication,
|
|
|
|
|
|
|
|
backward_context=model._hook_context,
|
|
|
|
)
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
def sync_dp_grads(self):
|
|
|
|
def sync_dp_grads(self):
|
|
|
@ -1206,6 +1207,7 @@ class HybridParallelPlugin(PipelinePluginBase):
|
|
|
|
partition_grad=(self.zero_stage == 2),
|
|
|
|
partition_grad=(self.zero_stage == 2),
|
|
|
|
forced_dtype=PRECISION_TORCH_TYPE[precision],
|
|
|
|
forced_dtype=PRECISION_TORCH_TYPE[precision],
|
|
|
|
overlap_allgather=overlap_allgather,
|
|
|
|
overlap_allgather=overlap_allgather,
|
|
|
|
|
|
|
|
fp8_communication=fp8_communication,
|
|
|
|
)
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
self.max_norm = max_norm
|
|
|
|
self.max_norm = max_norm
|
|
|
@ -1371,7 +1373,7 @@ class HybridParallelPlugin(PipelinePluginBase):
|
|
|
|
# so we disable it, performing manual reduction instead.
|
|
|
|
# so we disable it, performing manual reduction instead.
|
|
|
|
ctx = optimizer.no_sync() if isinstance(optimizer, HybridParallelZeroOptimizer) else model.no_sync()
|
|
|
|
ctx = optimizer.no_sync() if isinstance(optimizer, HybridParallelZeroOptimizer) else model.no_sync()
|
|
|
|
|
|
|
|
|
|
|
|
with ctx, model._wait_all_gather():
|
|
|
|
with ctx, model._hook_context():
|
|
|
|
outputs = self.schedule.forward_backward_step(
|
|
|
|
outputs = self.schedule.forward_backward_step(
|
|
|
|
model, data_iter, criterion, optimizer, return_loss, return_outputs
|
|
|
|
model, data_iter, criterion, optimizer, return_loss, return_outputs
|
|
|
|
)
|
|
|
|
)
|
|
|
|