[fx] Add concrete info prop (#1677)

* [fx] concreteinfoprop

* [fx] add concreteinfoprop

* [fx] modify docstring of ConcreteInfoProp

* [fx] fix device error

* [fx] modify parameter calculation

* [fx] modify parameters calculation
pull/1678/head
Boyuan Yao 2 years ago committed by GitHub
parent 1df98d5b66
commit 132b4306b7
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -1,3 +1,4 @@
from .adding_split_node_pass import balanced_split_pass, split_with_split_nodes_pass
from .shard_1d_pass import column_shard_linear_pass, row_shard_linear_pass
from .meta_info_prop import MetaInfoProp
from .concrete_info_prop import ConcreteInfoProp

@ -0,0 +1,290 @@
from dataclasses import asdict
from colossalai.fx.profiler import GraphInfo
import torch
import torch.fx
from torch.fx.node import Node, Argument, Target
from torch.utils._pytree import tree_flatten
from typing import Any, List, Tuple, NamedTuple, Dict, Optional
from torch.fx._compatibility import compatibility
from colossalai.fx.profiler import profile_function, profile_module, profile_method, activation_size
from torch.fx.graph_module import GraphModule
@compatibility(is_backward_compatible=True)
class ConcreteInfoProp(torch.fx.Interpreter):
"""
Execute an FX graph Node-by-Node with concrete tensor and record the memory
usage, execution time of forward and backward, and type of the result into
the corresponding node.
Usage:
BATCH_SIZE = 2
DIM_IN = 4
DIM_HIDDEN = 16
DIM_OUT = 16
model = torch.nn.Sequential(
torch.nn.Linear(DIM_IN, DIM_HIDDEN),
torch.nn.Linear(DIM_HIDDEN, DIM_OUT),
).cuda()
input_sample = torch.rand(BATCH_SIZE, DIM_IN, device="cuda")
gm = symbolic_trace(model)
interp = ConcreteInfoProp(gm)
interp.run(input_sample)
print(interp.summary(unit='kb'))
output of above code is
Op type Op Forward time Backward time SAVE_FWD_IN FWD_OUT FWD_TMP BWD_OUT BWD_TMP
----------- ------- ----------------------- ------------------------ ------------- --------- --------- --------- ---------
placeholder input_1 0.0 s 0.0 s False 0.00 KB 0.00 KB 0.00 KB 0.00 KB
call_module _0 0.0003993511199951172 s 0.00706791877746582 s False 0.50 KB 0.00 KB 0.03 KB 0.66 KB
call_module _1 6.29425048828125e-05 s 0.00018286705017089844 s False 0.50 KB 0.00 KB 0.12 KB 0.81 KB
output output 0.0 s 0.0 s True 0.00 KB 0.00 KB 0.00 KB 0.00 KB
Args:
module (GraphModule): The module to be executed
"""
_is_proped: bool = False
def run(self, *args, initial_env: Optional[Dict[Node, Any]] = None, enable_io_processing: bool = True) -> Any:
"""Customized run for ConcreteInfoProp
We need to store the device in self.device
Args:
*args: The arguments to the Module to run, in positional order
initial_env (Optional[Dict[Node, Any]]): An optional starting environment for execution.
This is a dict mapping `Node` to any value. This can be used, for example, to
pre-populate results for certain `Nodes` so as to do only partial evaluation within
the interpreter.
enable_io_processing (bool): If true, we process the inputs and outputs with graph's process_inputs and
process_outputs function first before using them.
Returns:
Any: The value returned from executing the Module
"""
flatten_args, _ = tree_flatten(args)
self.device = next(item for item in flatten_args if hasattr(item, "device")).device
return super().run(*args, initial_env, enable_io_processing)
@compatibility(is_backward_compatible=True)
def run_node(self, n: Node) -> Any:
"""
Run a specific node ``n`` and return the result.
Calls into placeholder, get_attr, call_function,
call_method, call_module, or output depending
on ``node.op``
Args:
n (Node): The Node to execute
Returns:
Any: The result of executing ``n``
"""
self._is_proped = True
result, meta_info = super().run_node(n)
n.meta = {**n.meta, **asdict(meta_info)} # extend MetaInfo to `n.meta`
# TODO: the attribute node_size should be removed in the future
setattr(n, 'node_size', n.meta.get('fwd_mem_tmp', 0) + n.meta.get('fwd_mem_out', 0))
n.meta['type'] = type(result)
# retain the autograd graph
for param in self.module.parameters():
param.grad = None
return result
# Main Node running APIs
@compatibility(is_backward_compatible=True)
def placeholder(self, target: 'Target', args: Tuple[Argument, ...], kwargs: Dict[str, Any]) -> Any:
"""
Execute a ``placeholder`` node. Note that this is stateful:
``Interpreter`` maintains an internal iterator over
arguments passed to ``run`` and this method returns
next() on that iterator.
Args:
target (Target): The call target for this node. See
`Node <https://pytorch.org/docs/master/fx.html#torch.fx.Node>`__ for
details on semantics
args (Tuple): Tuple of positional args for this invocation
kwargs (Dict): Dict of keyword arguments for this invocation
Returns:
result (Any): The argument value that was retrieved
meta_info (MetaInfo): The memory cost and forward & backward time.
"""
return super().placeholder(target, args, kwargs), GraphInfo()
@compatibility(is_backward_compatible=True)
def get_attr(self, target: 'Target', args: Tuple[Argument, ...], kwargs: Dict[str, Any]) -> Any:
"""
Execute a ``get_attr`` node. Will retrieve an attribute
value from the ``Module`` hierarchy of ``self.module``.
Args:
target (Target): The call target for this node. See
`Node <https://pytorch.org/docs/master/fx.html#torch.fx.Node>`__ for
details on semantics
args (Tuple): Tuple of positional args for this invocation
kwargs (Dict): Dict of keyword arguments for this invocation
Return:
result (Any): The argument value that was retrieved
meta_info (MetaInfo): The memory cost and FLOPs estimated with `MetaTensor`.
"""
return super().get_attr(target, args, kwargs), GraphInfo()
@compatibility(is_backward_compatible=True)
def call_function(self, target: 'Target', args: Tuple[Argument, ...], kwargs: Dict[str, Any]) -> Any:
"""
Execute a ``call_function`` node with meta tensor and return the result and its meta profile.
Args:
target (Target): The call target for this node. See
`Node <https://pytorch.org/docs/master/fx.html#torch.fx.Node>`__ for
details on semantics
args (Tuple): Tuple of positional args for this invocation
kwargs (Dict): Dict of keyword arguments for this invocation
Return
result (Any): The argument value that was retrieved
meta_info (MetaInfo): The memory cost and forward & backward time.
"""
assert not isinstance(target, str)
return profile_function(target, self.device)(*args, **kwargs)
@compatibility(is_backward_compatible=True)
def call_method(self, target: 'Target', args: Tuple[Argument, ...], kwargs: Dict[str, Any]) -> Any:
"""
Execute a ``call_method`` node with meta tensor and return the result and its meta profile.
Args:
target (Target): The call target for this node. See
`Node <https://pytorch.org/docs/master/fx.html#torch.fx.Node>`__ for
details on semantics
args (Tuple): Tuple of positional args for this invocation
kwargs (Dict): Dict of keyword arguments for this invocation
Return
result (Any): The argument value that was retrieved
meta_info (MetaInfo): The memory cost and forward & backward time.
"""
return profile_method(target, self.device)(*args, **kwargs)
@compatibility(is_backward_compatible=True)
def call_module(self, target: 'Target', args: Tuple[Argument, ...], kwargs: Dict[str, Any]) -> Any:
"""
Execute a ``call_module`` node with meta tensor and return the result and its meta profile.
Args:
target (Target): The call target for this node. See
`Node <https://pytorch.org/docs/master/fx.html#torch.fx.Node>`__ for
details on semantics
args (Tuple): Tuple of positional args for this invocation
kwargs (Dict): Dict of keyword arguments for this invocation
Return
result (Any): The argument value that was retrieved
meta_info (MetaInfo): The memory cost and forward & backward time.
"""
# Retrieve executed args and kwargs values from the environment
# Execute the method and return the result
assert isinstance(target, str)
submod = self.fetch_attr(target)
return profile_module(submod, self.device)(*args, **kwargs)
@compatibility(is_backward_compatible=True)
def output(self, target: 'Target', args: Tuple[Argument, ...], kwargs: Dict[str, Any]) -> Any:
"""
Execute an ``output`` node. This really just retrieves
the value referenced by the ``output`` node and returns it.
Args:
target (Target): The call target for this node. See
`Node <https://pytorch.org/docs/master/fx.html#torch.fx.Node>`__ for
details on semantics
args (Tuple): Tuple of positional args for this invocation
kwargs (Dict): Dict of keyword arguments for this invocation
Return:
result (Any): The argument value that was retrieved
meta_info (MetaInfo): The memory cost and forward & backward time.
"""
return args[0], GraphInfo(save_fwd_in=True)
def propagate(self, *args):
"""
Run `module` via interpretation and return the result and
record the shape and type of each node.
Args:
*args (Tensor): the sample input.
Returns:
Any: The value returned from executing the Module
"""
return super().run(*args)
def summary(self, unit: str = 'MB') -> str:
"""
Summarizes the memory and FLOPs statistics of the `GraphModule` in
tabular format. Note that this API requires the ``tabulate`` module
to be installed.
"""
# https://github.com/pytorch/pytorch/blob/master/torch/fx/graph.py
try:
from tabulate import tabulate
except ImportError:
print("`summary` relies on the library `tabulate`, "
"which could not be found on this machine. Run `pip "
"install tabulate` to install the library.")
assert self._is_proped, "Please call `interp.run(input)` before calling `interp.summary()`."
# Build up a list of summary information for each node
node_summaries: List[List[Any]] = []
def mem_repr(mem: int) -> str:
unit_divisor_map = {
'kb': 1024,
'mb': 1024**2,
'gb': 1024**3,
'tb': 1024**4,
}
return f"{mem / unit_divisor_map[unit.lower()]:.2f} {unit.upper()}"
def time_repr(time: float):
return f"{time:,} s"
for node in self.module.graph.nodes:
node: Node
node_summaries.append([
node.op,
str(node),
time_repr(node.meta['fwd_time']),
time_repr(node.meta['bwd_time']),
node.meta['save_fwd_in'],
mem_repr(node.meta['fwd_mem_out']),
mem_repr(node.meta['fwd_mem_tmp']),
mem_repr(node.meta['bwd_mem_out']),
mem_repr(node.meta['bwd_mem_tmp']),
])
# Use the ``tabulate`` library to create a well-formatted table
# presenting our summary information
headers: List[str] = [
'Op type',
'Op',
'Forward time',
'Backward time',
'SAVE_FWD_IN',
'FWD_OUT',
'FWD_TMP',
'BWD_OUT',
'BWD_TMP',
]
return tabulate(node_summaries, headers=headers, stralign='right')

@ -1,5 +1,6 @@
from dataclasses import dataclass
from enum import Enum
from functools import partial
from typing import Dict
from torch.fx import Graph, Node
from .memory import activation_size, is_inplace
@ -33,8 +34,10 @@ class GraphInfo:
-------------------------------
============================================================================
Attributes:
fwd_flop (int): The forward FLOPs of a certain node
fwd_flop (int): The forward FLOPs of a certain node.
fwd_time (float): The real forward time (s) of a certain node.
bwd_flop (int): The backward FLOPs of a certain node.
bwd_time (float): The real backward time (s) of a certain node.
save_fwd_in (bool): The decision variable of whether to save the fwd_mem_out of parent nodes.
fwd_mem_tmp (int): See the above illustration.
fwd_mem_out (int): See the above illustration.
@ -42,7 +45,9 @@ class GraphInfo:
bwd_mem_out (int): See the above illustration.
"""
fwd_flop: int = 0
fwd_time: float = 0.0
bwd_flop: int = 0
bwd_time: float = 0.0
save_fwd_in: bool = False
fwd_mem_tmp: int = 0
fwd_mem_out: int = 0

@ -5,10 +5,11 @@ from torch.fx import Graph, Node
from torch.fx.node import Argument, Target
from torch.utils._pytree import tree_map
from .dataflow import autograd_graph_analysis, is_phase, Phase, GraphInfo
from .memory import activation_size
from .memory import activation_size, parameter_size
from .constant import ALIAS_ATEN
from .tensor import MetaTensor
from .opcount import flop_mapping
import time
__all__ = ['profile_function', 'profile_module', 'profile_method']
@ -27,33 +28,112 @@ def is_autogradable(x):
return isinstance(x, torch.Tensor) and x.is_floating_point()
# super-dainiu:
# x.detach() will change the unique identifier of data_ptr
# we need to handle this in a stupid way
def detach(x):
def detach_variables(x):
if isinstance(x, torch.Tensor):
requires_grad = x.requires_grad
x.requires_grad_(False)
x.requires_grad_(requires_grad)
x = x.detach()
x.requires_grad = requires_grad
return x
def _profile_concrete(target: Callable, *args, **kwargs) -> Tuple[Tuple[Any, ...], GraphInfo]:
"""
Profile a Callable function with args and kwargs on concrete devices.
"""Profile a Callable function with args and kwargs on concrete devices by https://github.com/Cypher30
To profile the actual forward memory, we first run target in the context torch.no_grad() to get
the fwd_mem_out, then we run target with grad enable to found the extra memory stored in the memory
by memory allocated minus the fwd_mem_out.
To profile the actual backward memory, we first make dummy gradient for torch.autograd.backward, then
find the bwd_mem_tmp with memory peak during the process minus bwd_mem_out(it is actually equal to size
of args and kwargs).
We also add time stamps to profile the real forward and backward time.
Args:
target (Callable): A Callable function
args (Any): Argument
kwargs (Any): Argument
Raises:
NotImplementedError: TODO(yby)
args (Any): Arguments
kwargs (Any): Arguments
Returns:
out (Tuple[Any, ...]): The argument value that was retrieved.
meta_info (GraphInfo): The memory cost and FLOPs estimated with `MetaTensor`.
Tuple[Tuple[Any, ...], GraphInfo]: Output for next node & memory cost and real forward and backward
time.
"""
raise NotImplementedError
graphinfo = GraphInfo()
# detach input from the graph
args = tree_map(detach_variables, args)
kwargs = tree_map(detach_variables, kwargs)
if isinstance(target, str):
# args[0] is the `self` object for this method call
self_obj, *args_tail = args
# calculate fwd_mem_out
mem_stamp0 = torch.cuda.memory_allocated()
with torch.no_grad():
out = getattr(self_obj, target)(*args_tail, **kwargs)
mem_stamp1 = torch.cuda.memory_allocated()
graphinfo.fwd_mem_out = mem_stamp1 - mem_stamp0
del out
# calculate fwd_mem_tmp & fwd_time
mem_stamp0 = torch.cuda.memory_allocated()
fwd_time0 = time.time()
out = getattr(self_obj, target)(*args_tail, **kwargs)
fwd_time1 = time.time()
graphinfo.fwd_time = fwd_time1 - fwd_time0
mem_stamp1 = torch.cuda.memory_allocated()
graphinfo.fwd_mem_tmp = mem_stamp1 - mem_stamp0 - graphinfo.fwd_mem_out
# calculate bwd_mem_tmp & bwd_time
grad_tensors = tree_map(lambda x: torch.ones_like(x) if isinstance(x, torch.Tensor) else None, out)
torch.cuda.reset_peak_memory_stats()
mem_stamp0 = torch.cuda.memory_allocated()
bwd_time0 = time.time()
torch.autograd.backward(out, grad_tensors=grad_tensors)
bwd_time1 = time.time()
graphinfo.bwd_time = bwd_time1 - bwd_time0
mem_stamp1 = torch.cuda.max_memory_allocated()
# calculate bwd memory stats
# NOTE: the module should add param to bwd_mem_out for bwd_mem_tmp calculation
graphinfo.bwd_mem_out = activation_size(args) + activation_size(kwargs)
graphinfo.bwd_mem_out += parameter_size(target.__self__) if hasattr(target.__self__, "parameters") else 0
graphinfo.bwd_mem_tmp = mem_stamp1 - mem_stamp0 - graphinfo.bwd_mem_out
else:
# calculate fwd_mem_out
mem_stamp0 = torch.cuda.memory_allocated()
with torch.no_grad():
out = target(*args, **kwargs)
mem_stamp1 = torch.cuda.memory_allocated()
graphinfo.fwd_mem_out = mem_stamp1 - mem_stamp0
del out
# calculate fwd_mem_tmp & fwd_time
mem_stamp0 = torch.cuda.memory_allocated()
fwd_time0 = time.time()
out = target(*args, **kwargs)
fwd_time1 = time.time()
graphinfo.fwd_time = fwd_time1 - fwd_time0
mem_stamp1 = torch.cuda.memory_allocated()
graphinfo.fwd_mem_tmp = mem_stamp1 - mem_stamp0 - graphinfo.fwd_mem_out
# calculate bwd_mem_tmp & bwd_time
grad_tensors = tree_map(lambda x: torch.ones_like(x) if isinstance(x, torch.Tensor) else None, out)
torch.cuda.reset_peak_memory_stats()
mem_stamp0 = torch.cuda.memory_allocated()
bwd_time0 = time.time()
torch.autograd.backward(out, grad_tensors=grad_tensors)
bwd_time1 = time.time()
graphinfo.bwd_time = bwd_time1 - bwd_time0
mem_stamp1 = torch.cuda.max_memory_allocated()
# calculate bwd memory stats
# NOTE: the module should add param to bwd_mem_out for bwd_mem_tmp calculation
graphinfo.bwd_mem_out = activation_size(args) + activation_size(kwargs)
graphinfo.bwd_mem_out += parameter_size(target.__self__) if hasattr(target.__self__, "parameters") else 0
graphinfo.bwd_mem_tmp = mem_stamp1 - mem_stamp0 - graphinfo.bwd_mem_out
return tree_map(detach_variables, out), graphinfo
def _profile_meta(target: Callable, *args, **kwargs) -> Tuple[Tuple[Any, ...], GraphInfo]:
@ -135,7 +215,6 @@ def _profile_meta(target: Callable, *args, **kwargs) -> Tuple[Tuple[Any, ...], G
name=subgraph._graph_namespace.create_name('input', x._tensor))
x._node.meta['phase'] = Phase.PLACEHOLDER
x._node.meta['saved_tensor'] = []
detach(x)
return x
# Basically, we need to detach the args and kwargs from the outer graph.
@ -206,12 +285,26 @@ def profile_function(target: 'Target', device: str = 'meta') -> Callable:
kwargs['inplace'] = False
if device == 'meta':
out, meta = _profile_meta(func, *args, **kwargs)
else:
out, meta = _profile_concrete(func, *args, **kwargs)
if inplace:
# currently we set the fwd_mem_tmp of ReLU to zero
if target in [torch.nn.functional.relu]:
meta.save_fwd_in = False
meta.bwd_mem_out = 0
meta.fwd_mem_tmp = 0
else:
out, meta = _profile_concrete(func, *args, **kwargs)
# find the grad for parameter in args and kwargs
param_size = 0
def get_param_size(x):
if isinstance(x, torch.nn.parameter):
param_size += activation_size(x)
tree_map(get_param_size, args)
tree_map(get_param_size, kwargs)
meta.bwd_mem_out -= param_size
return out, meta
f.__name__ = target.__name__
@ -257,18 +350,25 @@ def profile_module(module: torch.nn.Module, device: str = 'meta') -> Callable:
# If there is an argument that this `call_module` is inplace, we should
# still run the profiling but discard some results regarding `module`.
inplace = getattr(module, 'inplace', False)
# calculate parameter size
param_size = parameter_size(module)
if inplace:
module.inplace = False
if device == 'meta':
out, meta = _profile_meta(func, *args, **kwargs)
else:
out, meta = _profile_concrete(func, *args, **kwargs)
if inplace:
# super-dainiu: experiments on mobilenet_v2 shows that `torch.nn.ReLU`
# is the only inplace activation function that discard its input.
if type(module) in [torch.nn.ReLU]:
# currently we set the fwd_mem_tmp of ReLU to zero
if type(module) in [torch.nn.modules.activation.ReLU]:
meta.save_fwd_in = False
meta.bwd_mem_out = 0
meta.fwd_mem_tmp = 0
else:
out, meta = _profile_concrete(func, *args, **kwargs)
# grad for param will not be counted
meta.bwd_mem_out -= param_size
return out, meta
f.__name__ = module.__class__.__name__

Loading…
Cancel
Save