mirror of https://github.com/hpcaitech/ColossalAI
[gemini] state dict supports fp16 (#3590)
* [gemini] save state dict support fp16 * [gemini] save state dict shard support fp16 * [gemini] fix state dict * [gemini] fix state dictpull/3603/head
parent
d544ed4345
commit
12eff9eb4c
|
@ -202,7 +202,12 @@ class ZeroDDP(ColoDDP):
|
|||
for tensor in chunk.get_tensors():
|
||||
self.grads_device[tensor] = device
|
||||
|
||||
def state_dict(self, destination=None, prefix='', keep_vars=False, only_rank_0: bool = True):
|
||||
def state_dict(self,
|
||||
destination=None,
|
||||
prefix='',
|
||||
keep_vars=False,
|
||||
only_rank_0: bool = True,
|
||||
dtype: torch.dtype = torch.float16):
|
||||
"""Returns a dictionary containing a whole state of the module.
|
||||
|
||||
Both parameters and persistent buffers (e.g. running averages) are included.
|
||||
|
@ -221,7 +226,7 @@ class ZeroDDP(ColoDDP):
|
|||
destination = OrderedDict()
|
||||
destination._metadata = OrderedDict()
|
||||
destination._metadata[prefix[:-1]] = local_metadata = dict(version=self._version)
|
||||
self._save_to_state_dict(destination, prefix, keep_vars, only_rank_0)
|
||||
self._save_to_state_dict(destination, prefix, keep_vars, only_rank_0, dtype)
|
||||
|
||||
for hook in self._state_dict_hooks.values():
|
||||
hook_result = hook(self, destination, prefix, local_metadata)
|
||||
|
@ -229,7 +234,7 @@ class ZeroDDP(ColoDDP):
|
|||
destination = hook_result
|
||||
return destination
|
||||
|
||||
def _get_chunk_to_save_data(self, chunk: Chunk, only_rank_0: bool) -> Dict:
|
||||
def _get_chunk_to_save_data(self, chunk: Chunk, only_rank_0: bool, dtype: torch.dtype = torch.float16) -> Dict:
|
||||
"""
|
||||
get gathered chunk content.
|
||||
|
||||
|
@ -243,6 +248,8 @@ class ZeroDDP(ColoDDP):
|
|||
# save parameters
|
||||
chunk_to_save_data = dict()
|
||||
temp_chunk = get_temp_total_chunk_on_cuda(chunk)
|
||||
if torch.is_floating_point(temp_chunk):
|
||||
temp_chunk = temp_chunk.to(dtype)
|
||||
for tensor, tensor_info in chunk.tensors_info.items():
|
||||
record_tensor = torch.empty([0])
|
||||
record_flag = (not only_rank_0) | (dist.get_rank(chunk.torch_pg) == 0)
|
||||
|
@ -255,7 +262,8 @@ class ZeroDDP(ColoDDP):
|
|||
del temp_chunk
|
||||
return chunk_to_save_data
|
||||
|
||||
def _get_param_to_save_data(self, param_list: List[torch.nn.Parameter], only_rank_0: bool) -> Dict:
|
||||
def _get_param_to_save_data(self, param_list: List[torch.nn.Parameter], only_rank_0: bool,
|
||||
dtype: torch.dtype) -> Dict:
|
||||
"""
|
||||
get param content from chunks.
|
||||
|
||||
|
@ -270,10 +278,10 @@ class ZeroDDP(ColoDDP):
|
|||
param_to_save_data = dict()
|
||||
chunk_list = self.chunk_manager.get_chunks(param_list)
|
||||
for chunk in chunk_list:
|
||||
param_to_save_data.update(self._get_chunk_to_save_data(chunk, only_rank_0))
|
||||
param_to_save_data.update(self._get_chunk_to_save_data(chunk, only_rank_0, dtype))
|
||||
return param_to_save_data
|
||||
|
||||
def _save_to_state_dict(self, destination, prefix, keep_vars, only_rank_0=True):
|
||||
def _save_to_state_dict(self, destination, prefix, keep_vars, only_rank_0=True, dtype=torch.float16):
|
||||
r"""Saves module state to `destination` dictionary, containing a state
|
||||
of the module, but not its descendants. This is called on every
|
||||
submodule in :meth:`~torch.nn.Module.state_dict`.
|
||||
|
@ -289,7 +297,8 @@ class ZeroDDP(ColoDDP):
|
|||
assert keep_vars is False, "`state_dict` with parameter, `keep_vars=True`, is not supported now."
|
||||
|
||||
# get copies of fp32 parameters in CPU
|
||||
param_to_save_data = self._get_param_to_save_data(self.fp32_params, only_rank_0)
|
||||
# as memory of fp16_params may be reused by grad, it's not reliable, we should use fp32_params and convert to fp16
|
||||
param_to_save_data = self._get_param_to_save_data(self.fp32_params, only_rank_0, dtype)
|
||||
# get the mapping between copies and fp16 parameters
|
||||
p_mapping = dict()
|
||||
for p, fp32_p in zip(self.fp16_params, self.fp32_params):
|
||||
|
@ -574,7 +583,8 @@ class ZeroDDP(ColoDDP):
|
|||
prefix: str = '',
|
||||
keep_vars: bool = False,
|
||||
max_shard_size: int = 1024,
|
||||
only_rank_0: bool = True) -> Iterator[OrderedDict]:
|
||||
only_rank_0: bool = True,
|
||||
dtype: torch.dtype = torch.float16) -> Iterator[OrderedDict]:
|
||||
"""Returns dictionaries containing a whole state of the module one by one. The max size of dictionary shard is specified by ``max_shard_size``.
|
||||
|
||||
Both parameters and persistent buffers (e.g. running averages) are included.
|
||||
|
@ -607,10 +617,11 @@ class ZeroDDP(ColoDDP):
|
|||
# deal with ddp ignored parameters
|
||||
gathered_param = param if keep_vars else param.detach()
|
||||
else:
|
||||
# as memory of fp16 param may be reused, we should use fp32 param and then convert to fp16
|
||||
fp32_param = fp16_to_fp32[param]
|
||||
if fp32_param not in gathered_param_buffer:
|
||||
chunk = self.chunk_manager.get_chunk(fp32_param)
|
||||
gathered_param_buffer.update(self._get_chunk_to_save_data(chunk, only_rank_0))
|
||||
gathered_param_buffer.update(self._get_chunk_to_save_data(chunk, only_rank_0, dtype))
|
||||
gathered_param = gathered_param_buffer.pop(fp32_param)
|
||||
|
||||
block = sharder.append(prefix + name, gathered_param)
|
||||
|
|
Loading…
Reference in New Issue