move async memory to an individual directory (#345)

pull/394/head
Jiarui Fang 2022-03-09 16:31:25 +08:00 committed by Frank Lee
parent 425bb0df3f
commit 10e2826426
4 changed files with 131 additions and 90 deletions

View File

@ -1,101 +1,15 @@
from colossalai.context.parallel_mode import ParallelMode
import torch
from . import BaseOpHook
from concurrent.futures import ThreadPoolExecutor
from colossalai.engine.ophooks import BaseOpHook
from colossalai.registry import OPHOOKS
from colossalai.logging import get_dist_logger
from time import sleep, time
import pickle
from typing import Optional
from colossalai.core import global_context as gpc
from colossalai.utils.memory_tracer import AsyncMemoryMonitor
import math
def get_cuda_memory_used(device: Optional[torch.device]) -> int:
"""Get the free memory info of device.
Notice that for CPU, this function will return 1/N of the total free memory,
where N is the world size.
:param device: device id
:type device: torch.device
:return: current memory usage, sized by MB
:rtype: int
"""
ret: int = torch.cuda.memory_allocated(device)
# get the peak memory to report correct data, so reset the counter for the next call
if hasattr(torch.cuda, "reset_peak_memory_stats"): # pytorch 1.4+
torch.cuda.reset_peak_memory_stats(device)
return ret
class AsyncMemoryMonitor:
"""
An Async Mem Monitor runing during computing. Sampling GPU memory usage of the current GPU
at interval of 1/(10**power) sec.
:param power: the power of time interval, defaults to 10
:type power: int
"""
def __init__(self, power: int = 10):
self.keep_measuring = False
self.executor = ThreadPoolExecutor(max_workers=1)
self.monitor_thread = None
self.interval = 1 / (10**power)
self.time_stamps = []
self.mem_stats = []
def __len__(self):
return len(self.mem_stats)
def set_interval(self, power: int):
self.clear()
self.interval = 1 / (10**power)
def is_measuring(self):
return self.keep_measuring
def start(self):
self.keep_measuring = True
self.monitor_thread = self.executor.submit(self._measure_usage)
def finish(self):
if self.keep_measuring is False:
return 0
self.keep_measuring = False
max_usage = self.monitor_thread.result()
self.monitor_thread = None
self.time_stamps.append(time())
self.mem_stats.append(max_usage)
return max_usage
def _measure_usage(self):
max_usage = 0
dev = torch.device(f"cuda:{torch.cuda.current_device()}")
while self.keep_measuring:
max_usage = max(
max_usage,
get_cuda_memory_used(dev),
)
sleep(self.interval)
return max_usage
def state_dict(self):
return {
"time_stamps": self.time_stamps,
"mem_stats": self.mem_stats,
}
def save(self, filename):
with open(filename, "wb") as f:
pickle.dump(self.state_dict(), f)
def clear(self):
self.mem_stats.clear()
self.time_stamps.clear()
@OPHOOKS.register_module
class MemTracerOpHook(BaseOpHook):
"""

View File

@ -0,0 +1,3 @@
from .async_memtracer import AsyncMemoryMonitor
__all__ = ['AsyncMemoryMonitor']

View File

@ -0,0 +1,108 @@
from concurrent.futures import ThreadPoolExecutor
from time import sleep, time
import pickle
from colossalai.utils import get_current_device
import torch
def _get_cuda_memory_used(device: torch.device) -> int:
"""
Get the free memory info of device.
:param device: device id
:type device: torch.device
:return: current memory usage, sized by MB
:rtype: int
"""
assert device.type == 'cuda'
ret: int = torch.cuda.memory_allocated(device)
# get the peak memory to report correct data, so reset the counter for the next call
if hasattr(torch.cuda, "reset_peak_memory_stats"): # pytorch 1.4+
torch.cuda.reset_peak_memory_stats(device)
return ret
class AsyncMemoryMonitor:
"""
An Async Memory Monitor runing during computing. Sampling memory usage of the current GPU
at interval of 1/(10**power) sec.
:param power: the power of time interval, defaults to 10
:type power: int
Usage:
```python
async_mem_monitor = AsyncMemoryMonitor()
input = torch.randn(2, 20).cuda()
OP1 = torch.nn.Linear(20, 30).cuda()
OP2 = torch.nn.Linear(30, 40).cuda()
async_mem_monitor.start()
output = OP1(input)
async_mem_monitor.finish()
async_mem_monitor.start()
output = OP2(output)
async_mem_monitor.finish()
async_mem_monitor.save('log.pkl')
```
"""
def __init__(self, power: int = 10):
self.keep_measuring = False
self.executor = ThreadPoolExecutor(max_workers=1)
self.monitor_thread = None
self.interval = 1 / (10**power)
self.time_stamps = []
self.mem_stats = []
def __len__(self):
return len(self.mem_stats)
def set_interval(self, power: int):
self.clear()
self.interval = 1 / (10**power)
def is_measuring(self):
return self.keep_measuring
def start(self):
self.keep_measuring = True
self.monitor_thread = self.executor.submit(self._measure_usage)
def finish(self):
if self.keep_measuring is False:
return 0
self.keep_measuring = False
max_usage = self.monitor_thread.result()
self.monitor_thread = None
self.time_stamps.append(time())
self.mem_stats.append(max_usage)
return max_usage
def _measure_usage(self):
max_usage = 0
while self.keep_measuring:
max_usage = max(
max_usage,
_get_cuda_memory_used(torch.device(f'cuda:{get_current_device()}')),
)
sleep(self.interval)
return max_usage
def state_dict(self):
return {
"time_stamps": self.time_stamps,
"mem_stats": self.mem_stats,
}
def save(self, filename):
with open(filename, "wb") as f:
print(self.state_dict())
pickle.dump(self.state_dict(), f)
def clear(self):
self.mem_stats.clear()
self.time_stamps.clear()

View File

@ -0,0 +1,16 @@
from async_memtracer import AsyncMemoryMonitor
import torch
if __name__ == '__main__':
async_mem_monitor = AsyncMemoryMonitor()
input = torch.randn(2, 20).cuda()
OP1 = torch.nn.Linear(20, 30).cuda()
OP2 = torch.nn.Linear(30, 40).cuda()
async_mem_monitor.start()
output = OP1(input)
async_mem_monitor.finish()
async_mem_monitor.start()
output = OP2(output)
async_mem_monitor.finish()
async_mem_monitor.save('log.pkl')