mirror of https://github.com/hpcaitech/ColossalAI
[Tensor] add a basic bert. (#911)
* add base bert test * Add bert test * polish * remove test_bert * polishpull/915/head
parent
ab95ec9aea
commit
0fab86b12a
|
@ -17,6 +17,64 @@ import random
|
|||
import os
|
||||
import numpy as np
|
||||
|
||||
# Hack huggingface Bert ModelOutput
|
||||
# Make it available to our ColoTensor
|
||||
from transformers.file_utils import ModelOutput
|
||||
from dataclasses import fields
|
||||
def post_init_colo(self):
|
||||
class_fields = fields(self)
|
||||
# Safety and consistency checks
|
||||
if not len(class_fields):
|
||||
raise ValueError(f"{self.__class__.__name__} has no fields.")
|
||||
if not all(field.default is None for field in class_fields[1:]):
|
||||
raise ValueError(f"{self.__class__.__name__} should not have more than one required field.")
|
||||
|
||||
first_field = getattr(self, class_fields[0].name)
|
||||
other_fields_are_none = all(getattr(self, field.name) is None for field in class_fields[1:])
|
||||
|
||||
def is_tensor_with_colo(x):
|
||||
"""
|
||||
Tests if `x` is a `ColoTensor` or `torch.Tensor`.
|
||||
"""
|
||||
if isinstance(x, torch.Tensor):
|
||||
return True
|
||||
|
||||
return isinstance(x, ColoTensor)
|
||||
|
||||
if other_fields_are_none and not is_tensor_with_colo(first_field):
|
||||
if isinstance(first_field, dict):
|
||||
iterator = first_field.items()
|
||||
first_field_iterator = True
|
||||
else:
|
||||
try:
|
||||
iterator = iter(first_field)
|
||||
first_field_iterator = True
|
||||
except TypeError:
|
||||
first_field_iterator = False
|
||||
|
||||
# if we provided an iterator as first field and the iterator is a (key, value) iterator
|
||||
# set the associated fields
|
||||
if first_field_iterator:
|
||||
for element in iterator:
|
||||
if (
|
||||
not isinstance(element, (list, tuple))
|
||||
or not len(element) == 2
|
||||
or not isinstance(element[0], str)
|
||||
):
|
||||
break
|
||||
setattr(self, element[0], element[1])
|
||||
if element[1] is not None:
|
||||
self[element[0]] = element[1]
|
||||
elif first_field is not None:
|
||||
self[class_fields[0].name] = first_field
|
||||
else:
|
||||
for field in class_fields:
|
||||
v = getattr(self, field.name)
|
||||
if v is not None:
|
||||
self[field.name] = v
|
||||
|
||||
ModelOutput.__post_init__ = post_init_colo
|
||||
# complete the hack
|
||||
|
||||
def set_seed(seed):
|
||||
random.seed(seed)
|
||||
|
@ -64,7 +122,7 @@ def run_1d_col_tp():
|
|||
model_torch = model_torch.cuda()
|
||||
|
||||
# A naive way to set spec for all weights in Linear
|
||||
for name, p in named_params_with_colotensor(model):
|
||||
for name, p in model.colo_named_parameters():
|
||||
if not isinstance(p, ColoTensor):
|
||||
continue
|
||||
if 'proj1' in name and ('weight' in name or 'bias' in name):
|
||||
|
@ -249,6 +307,60 @@ def run_1d_row_tp():
|
|||
if i > 5:
|
||||
break
|
||||
|
||||
def run_bert_1d():
|
||||
get_components_func = non_distributed_component_funcs.get_callable('bert')
|
||||
model_builder, train_dataloader, _, optimizer_class, criterion = get_components_func()
|
||||
device = get_current_device()
|
||||
|
||||
set_seed(1)
|
||||
with ColoInitContext(device=device):
|
||||
model = model_builder(checkpoint=True)
|
||||
|
||||
# parallel_action_list_row = [
|
||||
# ParallelAction(priority=1, compute_pattern=ComputePattern.TP1DRow_Linear, parallel_mode=ParallelMode.PARALLEL_1D)
|
||||
# ]
|
||||
# spec_row = TensorSpec(parallel_action_list_row)
|
||||
|
||||
parallel_action_list_col = [
|
||||
ParallelAction(priority=1, compute_pattern=ComputePattern.TP1DCol_Linear, parallel_mode=ParallelMode.PARALLEL_1D)
|
||||
]
|
||||
spec_col = TensorSpec(parallel_action_list_col)
|
||||
|
||||
parallel_action_list_embedding_col = [
|
||||
ParallelAction(priority=1, compute_pattern=ComputePattern.TP1DCol_Embedding, parallel_mode=ParallelMode.PARALLEL_1D)
|
||||
]
|
||||
spec_embedding_col = TensorSpec(parallel_action_list_embedding_col)
|
||||
|
||||
for name, p in model.colo_named_parameters():
|
||||
if not isinstance(p, ColoTensor):
|
||||
continue
|
||||
#print(name)
|
||||
if 'classifier' in name and ('weight' in name or 'bias' in name):
|
||||
p.set_spec(spec_col)
|
||||
if '_embeddings' in name and 'weight' in name:
|
||||
p.set_spec(spec_embedding_col)
|
||||
# for name, p in model.colo_named_parameters():
|
||||
# if not isinstance(p, ColoTensor):
|
||||
# continue
|
||||
# print(f"{name}: is_gathered {p.is_gathered()}")
|
||||
|
||||
model = model.cuda()
|
||||
|
||||
for i, (data, label) in enumerate(train_dataloader):
|
||||
if i > 5:
|
||||
break
|
||||
data = data.to(device)
|
||||
label = label.to(device)
|
||||
|
||||
model.train()
|
||||
if criterion:
|
||||
output = model(data)
|
||||
loss = criterion(output, label)
|
||||
else:
|
||||
output = model(data, label)
|
||||
loss = output
|
||||
|
||||
loss.backward()
|
||||
|
||||
def run_dist(rank, world_size, port):
|
||||
config = dict(parallel=dict(tensor=dict(mode="1d", size=world_size),))
|
||||
|
@ -256,16 +368,30 @@ def run_dist(rank, world_size, port):
|
|||
run_1d_row_tp()
|
||||
run_1d_col_tp()
|
||||
|
||||
def run_dist_bert(rank, world_size, port):
|
||||
config = dict(parallel=dict(tensor=dict(mode="1d", size=world_size),))
|
||||
colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
run_bert_1d()
|
||||
|
||||
@pytest.mark.dist
|
||||
@parameterize('world_size', [1, 4])
|
||||
@pytest.mark.parametrize('world_size', [1, 4])
|
||||
@rerun_if_address_is_in_use()
|
||||
def test_simple_net(world_size):
|
||||
run_func = partial(run_dist, world_size=world_size, port=free_port())
|
||||
mp.spawn(run_func, nprocs=world_size)
|
||||
|
||||
@pytest.mark.dist
|
||||
#@pytest.mark.parametrize('world_size', [1, 4])
|
||||
#Don't really add it to pytest now. After finishing Classifier and Loss, I(jzy) will remove this annotation.
|
||||
@parameterize('world_size', [1])
|
||||
@rerun_if_address_is_in_use()
|
||||
def test_bert(world_size):
|
||||
run_func = partial(run_dist_bert, world_size=world_size, port=free_port())
|
||||
mp.spawn(run_func, nprocs=world_size)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
# test_simple_net()
|
||||
test_model_parameters()
|
||||
# test_model_parameters()
|
||||
# test_colo_optimizer()
|
||||
test_bert()
|
||||
|
|
Loading…
Reference in New Issue