mirror of https://github.com/hpcaitech/ColossalAI
[tensor] shape consistency generate transform path and communication cost (#1435)
* [tensor] shape consistency output transform path and communication cost * polish codepull/1449/head
parent
5774fe0270
commit
0f3042363c
|
@ -1,7 +1,11 @@
|
|||
import torch
|
||||
from colossalai.tensor.sharding_spec import ShardingSpec, _DimSpec
|
||||
from colossalai.tensor.utils import all_gather_simulator, all_to_all_simulator, shard_simulator
|
||||
from enum import Enum
|
||||
from copy import deepcopy
|
||||
import math
|
||||
from functools import reduce
|
||||
import operator
|
||||
|
||||
|
||||
class CollectiveCommPattern(Enum):
|
||||
|
@ -10,96 +14,71 @@ class CollectiveCommPattern(Enum):
|
|||
SHARD = 'shard'
|
||||
|
||||
|
||||
class CommSpec:
|
||||
'''
|
||||
Communication spec is used to record the communication action. It has two main functions:
|
||||
1. Compute the communication cost which will be used in auto parallel solver.
|
||||
2. Convert the communication spec to real action which will be used in runtime.
|
||||
It contains comm_pattern to determine the
|
||||
communication method, sharding_spec to determine the communication size, gather_dim and shard_dim
|
||||
to determine the buffer shape, and logical_process_axis
|
||||
|
||||
Argument:
|
||||
comm_pattern(CollectiveCommPattern): decribe the communication method used in this spec.
|
||||
sharding_spec(ShardingSpec): This is sharding spec of the tensor which will join the communication action.
|
||||
gather_dim(int, optional): The gather_dim of the tensor will be gathered.
|
||||
shard_dim(int, optional): The shard_dim of the tensor will be sharded.
|
||||
logical_process_axis(int, optional): The mesh_dim to implement the communication action.
|
||||
'''
|
||||
|
||||
def __init__(self, comm_pattern, sharding_spec, gather_dim=None, shard_dim=None, logical_process_axis=None):
|
||||
self.comm_pattern = comm_pattern
|
||||
self.sharding_spec = sharding_spec
|
||||
self.gather_dim = gather_dim
|
||||
self.shard_dim = shard_dim
|
||||
self.logical_process_axis = logical_process_axis
|
||||
|
||||
def __repr__(self):
|
||||
res_list = ["CommSpec:("]
|
||||
if self.comm_pattern == CollectiveCommPattern.ALLGATHER:
|
||||
res_list.append(f"comm_pattern:allgather, ")
|
||||
res_list.append(f"gather_dim:{self.gather_dim}, ")
|
||||
res_list.append(f"logical_process_axis:{self.logical_process_axis})")
|
||||
elif self.comm_pattern == CollectiveCommPattern.ALLTOALL:
|
||||
res_list.append(f"comm_pattern:all2all, ")
|
||||
res_list.append(f"gather_dim:{self.gather_dim}, ")
|
||||
res_list.append(f"shard_dim:{self.shard_dim}, ")
|
||||
res_list.append(f"logical_process_axis: {self.logical_process_axis})")
|
||||
else:
|
||||
res_list.append(f"comm_pattern:shard, ")
|
||||
res_list.append(f"shard_dim:{self.shard_dim}, ")
|
||||
res_list.append(f"logical_process_axis:{self.logical_process_axis})")
|
||||
return ''.join(res_list)
|
||||
|
||||
def get_comm_cost(self):
|
||||
'''
|
||||
For all_gather and all2all operation, the formula provided in DeviceMesh with alpha-beta model is used to
|
||||
compute the communication cost.
|
||||
For shard operation, it is an on-chip operation, so the communication cost is zero.
|
||||
'''
|
||||
comm_size = reduce(operator.mul, self.sharding_spec.get_sharded_shape_per_device(), 1)
|
||||
if self.comm_pattern == CollectiveCommPattern.ALLGATHER:
|
||||
return self.sharding_spec.device_mesh.all_gather_cost(comm_size, self.logical_process_axis)
|
||||
if self.comm_pattern == CollectiveCommPattern.ALLTOALL:
|
||||
return self.sharding_spec.device_mesh.all_to_all_cost(comm_size, self.logical_process_axis)
|
||||
return 0
|
||||
|
||||
def covert_spec_to_action(self):
|
||||
pass
|
||||
|
||||
|
||||
class ShapeConsistencyManager:
|
||||
|
||||
def __init__(self, consistency_option=None):
|
||||
self.consistency_option = consistency_option
|
||||
self.total_communication_cost = 0
|
||||
self.total_transform_steps = 0
|
||||
self.cached_spec_pairs = {}
|
||||
|
||||
def _all_gather_simulator(self, target_pair):
|
||||
'''
|
||||
Simulating all-gather operation, analyze the communication cost
|
||||
and simulate the influence of the DimSpec.
|
||||
|
||||
We don't allow uncontiguous layout, such as all-gather(S012)->S02 is NOT allowed.
|
||||
Therefore, all gather operation just remove the last element in shard list,
|
||||
e.g.:
|
||||
all-gather(S01) -> S0
|
||||
|
||||
Argument:
|
||||
target_pair(Tuple[int, List[int]]): The first element is the dimension of tensor to be sharded,
|
||||
and the second element decribes which logical axis will be sharded in that dimension.
|
||||
'''
|
||||
_, shard_list = target_pair
|
||||
new_shard_list = shard_list[:-1]
|
||||
# TODO: compute comm cost
|
||||
comm_cost = 0
|
||||
return new_shard_list, comm_cost
|
||||
|
||||
def _all_to_all_simulator(self, f_target_pair, b_target_pair):
|
||||
'''
|
||||
Simulating all-to-all operation, analyze the communication cost
|
||||
and simulate the influence of the DimSpec.
|
||||
|
||||
We BANNED all representations which shard_list in decreasing order,
|
||||
such as S10, so all-to-all(S0, S1) -> RS01 is NOT allowed.
|
||||
Therefore, if the behind shard_list is not None, we just extend it to the front shard_list.
|
||||
Argument:
|
||||
target_pair(Tuple[int, List[int]]): The first element is the dimension of tensor to be sharded,
|
||||
and the second element decribes which logical axis will be sharded in that dimension.
|
||||
e.g.:
|
||||
all-to-all(S0, S1) -> [S01, R]
|
||||
all-to-all(S0, R) -> [R, S0]
|
||||
Otherwise, we extend the front shard_list to behind.
|
||||
e.g.:
|
||||
all-to-all(R, S1) -> [S1, R]
|
||||
|
||||
Argument:
|
||||
target_pair(Tuple[int, List[int]]): The first element is the dimension of tensor to be sharded,
|
||||
and the second element decribes which logical axis will be sharded in that dimension.
|
||||
'''
|
||||
_, f_shard_list = f_target_pair
|
||||
_, b_shard_list = b_target_pair
|
||||
if not len(b_shard_list):
|
||||
b_shard_list.extend(f_shard_list)
|
||||
f_shard_list = []
|
||||
else:
|
||||
f_shard_list.extend(b_shard_list)
|
||||
b_shard_list = []
|
||||
# TODO: compute comm cost
|
||||
comm_cost = 0
|
||||
return f_shard_list, b_shard_list, comm_cost
|
||||
|
||||
def _shard_simulator(self, target_pair, legal_sharding_dims):
|
||||
'''
|
||||
Simulating shard operation, analyze the communication cost(always ZERO)
|
||||
and simulate the influence of the DimSpec.
|
||||
|
||||
We don't allow uncontiguous layout, such as shard(S0)->S02 is NOT allowed.
|
||||
In addition, We BANNED all representations which shard_list in decreasing order,
|
||||
such as S10, so shard(S0) -> S10 is NOT allowed.
|
||||
Therefore, for the R dimension, we could just append any legal sharding dim on it.
|
||||
e.g.:
|
||||
shard(R) -> S0
|
||||
For the S dimension, we need to make sure the shard_list after sharding still keep rising order.
|
||||
e.g:
|
||||
shard(S0) -> S01
|
||||
|
||||
Argument:
|
||||
target_pair(Tuple[int, List[int]]): The first element is the dimension of tensor to be sharded,
|
||||
and the second element decribes which logical axis will be sharded in that dimension.
|
||||
'''
|
||||
_, shard_list = target_pair
|
||||
shard_list_list = []
|
||||
for dim in legal_sharding_dims:
|
||||
if len(shard_list) != 0 and dim <= shard_list[-1]:
|
||||
continue
|
||||
new_shard_list = shard_list + [dim]
|
||||
shard_list_list.append(new_shard_list)
|
||||
comm_cost = 0
|
||||
return shard_list_list, comm_cost
|
||||
self.cached_spec_pairs_transform_path = {}
|
||||
|
||||
def get_all_all_gather_spec(self, source_spec, orig_cost):
|
||||
'''
|
||||
|
@ -132,15 +111,35 @@ class ShapeConsistencyManager:
|
|||
device_mesh_shape: (4, 4): 0}
|
||||
'''
|
||||
valid_spec_dict = {}
|
||||
comm_pattern = CollectiveCommPattern.ALLGATHER
|
||||
for target_pair in source_spec.dim_partition_dict.items():
|
||||
shard_list, cost = self._all_gather_simulator(target_pair)
|
||||
shard_list = all_gather_simulator(target_pair)
|
||||
index = target_pair[0]
|
||||
new_dim_partition_dict = deepcopy(source_spec.dim_partition_dict)
|
||||
new_dim_partition_dict[index] = shard_list
|
||||
|
||||
# We won't add empty list into dim_partition_dict
|
||||
# The key will be popped if the related shard_list is empty
|
||||
if shard_list:
|
||||
new_dim_partition_dict[index] = shard_list
|
||||
else:
|
||||
new_dim_partition_dict.pop(index)
|
||||
|
||||
# generate the CommSpec to record the action of source_sharding_spec->new_sharding_spec
|
||||
gather_dim = index
|
||||
logical_process_axis = target_pair[1][-1]
|
||||
comm_spec = CommSpec(comm_pattern,
|
||||
sharding_spec=source_spec,
|
||||
gather_dim=gather_dim,
|
||||
logical_process_axis=logical_process_axis)
|
||||
|
||||
# compute the communication cost with CommSpec
|
||||
cost = comm_spec.get_comm_cost()
|
||||
|
||||
# generate new sharding spec
|
||||
new_sharding_spec = ShardingSpec(source_spec.device_mesh,
|
||||
source_spec.entire_shape,
|
||||
dim_partition_dict=new_dim_partition_dict)
|
||||
valid_spec_dict[new_sharding_spec] = orig_cost + cost
|
||||
valid_spec_dict[new_sharding_spec] = (comm_spec, orig_cost + cost)
|
||||
return valid_spec_dict
|
||||
|
||||
def get_all_all_to_all_spec(self, source_spec, orig_cost):
|
||||
|
@ -176,6 +175,7 @@ class ShapeConsistencyManager:
|
|||
device_mesh_shape: (4, 4): 0}
|
||||
'''
|
||||
valid_spec_dict = {}
|
||||
comm_pattern = CollectiveCommPattern.ALLTOALL
|
||||
tensor_dims = len(source_spec.entire_shape)
|
||||
for f_index in range(tensor_dims - 1):
|
||||
for b_index in range(f_index + 1, tensor_dims):
|
||||
|
@ -184,24 +184,62 @@ class ShapeConsistencyManager:
|
|||
continue
|
||||
else:
|
||||
if f_index in source_spec.dim_partition_dict:
|
||||
# skip (S01, R) -> (R, S01) is NOT allowed
|
||||
if len(source_spec.dim_partition_dict[f_index]) >= 2:
|
||||
continue
|
||||
f_target_pair = (f_index, deepcopy(source_spec.dim_partition_dict[f_index]))
|
||||
else:
|
||||
f_target_pair = (f_index, [])
|
||||
if b_index in source_spec.dim_partition_dict:
|
||||
# skip (R, R) -> (R, S01) is NOT allowed
|
||||
if len(source_spec.dim_partition_dict[b_index]) >= 2:
|
||||
continue
|
||||
b_target_pair = (b_index, deepcopy(source_spec.dim_partition_dict[b_index]))
|
||||
else:
|
||||
b_target_pair = (b_index, [])
|
||||
|
||||
f_shard_list, b_shard_list, cost = self._all_to_all_simulator(f_target_pair, b_target_pair)
|
||||
# skip (S1, S0) -> S10
|
||||
if f_target_pair[1] and b_target_pair[1] and f_target_pair[1][0] >= b_target_pair[1][0]:
|
||||
continue
|
||||
f_shard_list, b_shard_list = all_to_all_simulator(f_target_pair, b_target_pair)
|
||||
f_index = f_target_pair[0]
|
||||
b_index = b_target_pair[0]
|
||||
|
||||
# generate the CommSpec to record the action of source_sharding_spec->new_sharding_spec
|
||||
if len(f_shard_list) < len(f_target_pair[1]):
|
||||
gather_dim = f_index
|
||||
shard_dim = b_index
|
||||
logical_process_axis = f_target_pair[1][-1]
|
||||
else:
|
||||
gather_dim = b_index
|
||||
shard_dim = f_index
|
||||
logical_process_axis = b_target_pair[1][-1]
|
||||
comm_spec = CommSpec(comm_pattern,
|
||||
sharding_spec=source_spec,
|
||||
gather_dim=gather_dim,
|
||||
shard_dim=shard_dim,
|
||||
logical_process_axis=logical_process_axis)
|
||||
|
||||
# compute the communication cost with CommSpec
|
||||
cost = comm_spec.get_comm_cost()
|
||||
new_dim_partition_dict = deepcopy(source_spec.dim_partition_dict)
|
||||
new_dim_partition_dict[f_index] = f_shard_list
|
||||
new_dim_partition_dict[b_index] = b_shard_list
|
||||
|
||||
# We won't add empty list into dim_partition_dict
|
||||
# The key will be popped if the related shard_list is empty
|
||||
if f_shard_list:
|
||||
new_dim_partition_dict[f_index] = f_shard_list
|
||||
else:
|
||||
new_dim_partition_dict.pop(f_index)
|
||||
if b_shard_list:
|
||||
new_dim_partition_dict[b_index] = b_shard_list
|
||||
else:
|
||||
new_dim_partition_dict.pop(b_index)
|
||||
|
||||
# generate new sharding spec
|
||||
new_sharding_spec = ShardingSpec(source_spec.device_mesh,
|
||||
source_spec.entire_shape,
|
||||
dim_partition_dict=new_dim_partition_dict)
|
||||
valid_spec_dict[new_sharding_spec] = orig_cost + cost
|
||||
valid_spec_dict[new_sharding_spec] = (comm_spec, orig_cost + cost)
|
||||
return valid_spec_dict
|
||||
|
||||
def get_all_shard_spec(self, source_spec, orig_cost):
|
||||
|
@ -237,6 +275,9 @@ class ShapeConsistencyManager:
|
|||
device_mesh_shape: (4, 4): 0}
|
||||
'''
|
||||
valid_spec_dict = {}
|
||||
comm_pattern = CollectiveCommPattern.SHARD
|
||||
|
||||
# legal sharding dims means the mesh_id is still available to use.
|
||||
legal_sharding_dims = [i for i in range(len(source_spec.device_mesh.mesh_shape))]
|
||||
for dim, shard_list in source_spec.dim_partition_dict.items():
|
||||
for element in shard_list:
|
||||
|
@ -247,19 +288,31 @@ class ShapeConsistencyManager:
|
|||
tensor_dims = len(source_spec.entire_shape)
|
||||
for index in range(tensor_dims):
|
||||
if index not in source_spec.dim_partition_dict:
|
||||
shard_list_list, cost = self._shard_simulator((index, []), legal_sharding_dims)
|
||||
shard_list_list = shard_simulator((index, []), legal_sharding_dims)
|
||||
else:
|
||||
shard_list_list, cost = self._shard_simulator((index, source_spec.dim_partition_dict[index]),
|
||||
legal_sharding_dims)
|
||||
shard_list_list = shard_simulator((index, source_spec.dim_partition_dict[index]), legal_sharding_dims)
|
||||
if not shard_list_list:
|
||||
continue
|
||||
for shard_list in shard_list_list:
|
||||
new_dim_partition_dict = deepcopy(source_spec.dim_partition_dict)
|
||||
new_dim_partition_dict[index] = shard_list
|
||||
|
||||
# generate the CommSpec to record the action of source_sharding_spec->new_sharding_spec
|
||||
shard_dim = index
|
||||
logical_process_axis = shard_list[-1]
|
||||
comm_spec = CommSpec(comm_pattern,
|
||||
sharding_spec=source_spec,
|
||||
shard_dim=shard_dim,
|
||||
logical_process_axis=logical_process_axis)
|
||||
|
||||
# compute the communication cost with CommSpec
|
||||
cost = comm_spec.get_comm_cost()
|
||||
|
||||
# generate new sharding spec
|
||||
new_sharding_spec = ShardingSpec(source_spec.device_mesh,
|
||||
source_spec.entire_shape,
|
||||
dim_partition_dict=new_dim_partition_dict)
|
||||
valid_spec_dict[new_sharding_spec] = orig_cost + cost
|
||||
valid_spec_dict[new_sharding_spec] = (comm_spec, orig_cost + cost)
|
||||
return valid_spec_dict
|
||||
|
||||
def get_all_one_step_transform_spec(self, source_spec, orig_cost):
|
||||
|
@ -296,25 +349,93 @@ class ShapeConsistencyManager:
|
|||
Step3:
|
||||
Repeat above steps until the source spec transform to target spec.
|
||||
|
||||
This function is NOT completed, due to absense of difference function.
|
||||
During finding the transform path, commucation cost will be accumulated, and it
|
||||
will be finally used in auto parallel solver.
|
||||
|
||||
Additionally, to avoid repeating the path search in runtime, we cached all solved path
|
||||
in auto parallel strategy building time, which could handle most of cases in runtime.
|
||||
|
||||
Argument:
|
||||
source_spec(ShardingSpec): ShardingSpec of the source activation.
|
||||
target_spec(ShardingSpec): ShardingSpec of the target activation.
|
||||
|
||||
Return:
|
||||
transform_path(List[ShardingSpec]): The transform path from source_spec to target_spec,
|
||||
it contains the source_spec and target_spec.
|
||||
comm_action_sequence(List[CommSpec]): Keep the communication operations to complete the shape consistency in order.
|
||||
total_cost(float): total cost to complete shape consistency transform.
|
||||
|
||||
Example:
|
||||
dim_partition_source = {1: [0, 1]}
|
||||
dim_partition_target = {0: [0, 1]}
|
||||
# DistSpec:
|
||||
# shard_sequence: R,S01,R
|
||||
# device_mesh_shape: (4, 4)
|
||||
sharding_spec_source = ShardingSpec(device_mesh, entire_shape, dim_partition_source)
|
||||
# DistSpec:
|
||||
# shard_sequence: S01,R,R
|
||||
# device_mesh_shape: (4, 4)
|
||||
sharding_spec_target = ShardingSpec(device_mesh, entire_shape, dim_partition_target)
|
||||
transform_path, comm_action_sequence, total_cost = shape_consistency_manager.shape_consistency(sharding_spec_source, sharding_spec_target)
|
||||
print(f'transform_path: {transform_path}')
|
||||
print(f'comm_action_sequence: {comm_action_sequence}')
|
||||
print(f'total_cost: {total_cost}')
|
||||
|
||||
output:
|
||||
transform_path: [DistSpec:
|
||||
shard_sequence: R,S01,R
|
||||
device_mesh_shape: (4, 4), DistSpec:
|
||||
shard_sequence: R,S0,R
|
||||
device_mesh_shape: (4, 4), DistSpec:
|
||||
shard_sequence: S0,R,R
|
||||
device_mesh_shape: (4, 4), DistSpec:
|
||||
shard_sequence: S01,R,R
|
||||
device_mesh_shape: (4, 4)]
|
||||
comm_action_sequence: [CommSpec:(comm_pattern:allgather, gather_dim:1, logical_process_axis:1),
|
||||
CommSpec:(comm_pattern:all2all, gather_dim:1, shard_dim:0, logical_process_axis: 0),
|
||||
CommSpec:(comm_pattern:shard, shard_dim:0, logical_process_axis:1)]
|
||||
total_cost: 12294.402000000002
|
||||
'''
|
||||
MAX_TRANSFORM_STEPS = 10
|
||||
MAX_TRANSFORM_STEPS = 20
|
||||
total_cost = 0
|
||||
total_steps = 0
|
||||
transform_path = []
|
||||
comm_action_sequence = []
|
||||
spec_pairs = (str(source_spec.sharding_sequence), str(target_spec.sharding_sequence))
|
||||
self.cached_spec_pairs_transform_path[spec_pairs] = (None, None)
|
||||
|
||||
# We do nothing if the sharding spec is all the same.
|
||||
if source_spec.sharding_sequence_difference(target_spec) == 0:
|
||||
self.cached_spec_pairs_transform_path[spec_pairs] = (transform_path, comm_action_sequence)
|
||||
return (transform_path, comm_action_sequence, total_cost)
|
||||
|
||||
temp_sharding_spec = deepcopy(source_spec)
|
||||
transform_path.append(temp_sharding_spec)
|
||||
# To avoid dead loop, the loop will break after MAX_TRANSFORM_STEPS transforms
|
||||
while total_steps <= MAX_TRANSFORM_STEPS:
|
||||
valid_transform_spec_dict = get_all_one_step_transform_spec(temp_sharding_spec)
|
||||
best_difference_score = 0
|
||||
for sharding_spec, cost in valid_transform_spec_dict.items():
|
||||
if no_difference(sharding_spec, target_spec):
|
||||
valid_transform_spec_dict = self.get_all_one_step_transform_spec(temp_sharding_spec, total_cost)
|
||||
best_difference_score = math.inf
|
||||
|
||||
for sharding_spec, info_pairs in valid_transform_spec_dict.items():
|
||||
comm_spec, cost = info_pairs
|
||||
spec_difference = sharding_spec.sharding_sequence_difference(target_spec)
|
||||
|
||||
if spec_difference == 0:
|
||||
total_cost += cost
|
||||
transform_path.append(sharding_spec)
|
||||
return (transform_path, total_cost)
|
||||
if difference(sharding_spec, target_spec) > best_difference_score:
|
||||
comm_action_sequence.append(comm_spec)
|
||||
self.cached_spec_pairs_transform_path[spec_pairs] = (transform_path, comm_action_sequence)
|
||||
return (transform_path, comm_action_sequence, total_cost)
|
||||
|
||||
if spec_difference < best_difference_score:
|
||||
temp_sharding_spec = deepcopy(sharding_spec)
|
||||
temp_cost = cost
|
||||
temp_comm_spec = deepcopy(comm_spec)
|
||||
best_difference_score = spec_difference
|
||||
|
||||
transform_path.append(temp_sharding_spec)
|
||||
comm_action_sequence.append(temp_comm_spec)
|
||||
total_cost += temp_cost
|
||||
return (transform_path, total_cost)
|
||||
total_steps += 1
|
||||
|
||||
raise RuntimeError(f"Could not find a valid transform path with in {MAX_TRANSFORM_STEPS} steps.")
|
||||
|
|
|
@ -1,4 +1,15 @@
|
|||
import torch
|
||||
from colossalai.device.device_mesh import DeviceMesh
|
||||
from colossalai.tensor.utils import all_gather_simulator, all_to_all_simulator, shard_simulator
|
||||
from copy import deepcopy
|
||||
from enum import Enum
|
||||
from functools import reduce
|
||||
import operator
|
||||
|
||||
ALLGATHER_COST = 20
|
||||
SHARD_COST = 5
|
||||
STEP_PENALTY = 6
|
||||
NAN = 'nan'
|
||||
|
||||
|
||||
class _DimSpec:
|
||||
|
@ -15,6 +26,7 @@ class _DimSpec:
|
|||
def __init__(self, shard_list):
|
||||
self.is_replica = len(shard_list) == 0
|
||||
self.shard_list = shard_list
|
||||
self.build_difference_2d_dict()
|
||||
|
||||
def __eq__(self, other):
|
||||
return str(self) == str(other)
|
||||
|
@ -27,11 +39,101 @@ class _DimSpec:
|
|||
target += str(dim)
|
||||
return target
|
||||
|
||||
def _convert_str_to_shard_list(self, str_spec):
|
||||
'''
|
||||
Conver str_spec into shard_list.
|
||||
|
||||
Argument:
|
||||
str_spec(str): dim spec in str type.
|
||||
'''
|
||||
|
||||
if str_spec == 'R':
|
||||
return []
|
||||
if str_spec == 'S0':
|
||||
return [0]
|
||||
if str_spec == 'S1':
|
||||
return [1]
|
||||
if str_spec == 'S01':
|
||||
return [0, 1]
|
||||
|
||||
def build_difference_2d_dict(self):
|
||||
'''
|
||||
Build a difference maping for 2D device mesh case. It will be used to
|
||||
compute the difference between DimSpec pairs.
|
||||
'''
|
||||
|
||||
source_spec_list = ['R', 'S0', 'S1', 'S01']
|
||||
target_spec_list = ['R', 'S0', 'S1', 'S01']
|
||||
difference_dict = {}
|
||||
for source_spec in source_spec_list:
|
||||
for target_spec in target_spec_list:
|
||||
legal_sharding_dims = []
|
||||
spec_pair = (deepcopy(source_spec), deepcopy(target_spec))
|
||||
source_shard_list = self._convert_str_to_shard_list(source_spec)
|
||||
target_shard_list = self._convert_str_to_shard_list(target_spec)
|
||||
|
||||
# source same as target
|
||||
if source_shard_list == target_shard_list:
|
||||
difference = 0
|
||||
|
||||
# all_gather(source) -> target
|
||||
elif len(source_shard_list
|
||||
) == len(target_shard_list) + 1 and source_shard_list[:-1] == target_shard_list:
|
||||
difference = ALLGATHER_COST
|
||||
|
||||
# shard(source) -> target
|
||||
elif len(source_shard_list) == len(
|
||||
target_shard_list) - 1 and source_shard_list == target_shard_list[:-1] and target_shard_list[
|
||||
-1] not in source_shard_list:
|
||||
difference = SHARD_COST
|
||||
|
||||
# S1 -> S0 or S0 -> S1
|
||||
elif len(source_shard_list) == len(target_shard_list):
|
||||
# source -> R -> target
|
||||
difference = ALLGATHER_COST + STEP_PENALTY + SHARD_COST
|
||||
|
||||
# R -> S01
|
||||
elif len(source_shard_list) == len(target_shard_list) - 2:
|
||||
difference = SHARD_COST + STEP_PENALTY + SHARD_COST
|
||||
|
||||
# S01 -> R
|
||||
elif len(source_shard_list) == len(target_shard_list) + 2:
|
||||
difference = ALLGATHER_COST + STEP_PENALTY + ALLGATHER_COST
|
||||
|
||||
# S1 -> S01
|
||||
elif len(source_shard_list) == len(target_shard_list) - 1:
|
||||
difference = ALLGATHER_COST + STEP_PENALTY + SHARD_COST + STEP_PENALTY + SHARD_COST
|
||||
|
||||
# S01 -> S1
|
||||
elif len(source_shard_list) == len(target_shard_list) + 1:
|
||||
difference = ALLGATHER_COST + STEP_PENALTY + ALLGATHER_COST + STEP_PENALTY + SHARD_COST
|
||||
|
||||
else:
|
||||
difference = NAN
|
||||
difference_dict[spec_pair] = difference
|
||||
|
||||
self.difference_dict = difference_dict
|
||||
|
||||
def difference(self, other):
|
||||
'''
|
||||
This function is temporarily NOT implemented, it will be codesigned with ShapeConsistency feature.
|
||||
The difference between two _DimSpec.
|
||||
|
||||
Argument:
|
||||
other(_DimSpec): the dim spec to compare with.
|
||||
|
||||
Return:
|
||||
difference(int): the difference between two _DimSpec.
|
||||
|
||||
Example:
|
||||
dim_spec = _DimSpec([0])
|
||||
other_dim_spec = _DimSpec([0, 1])
|
||||
print(dim_spec.difference(other_dim_spec))
|
||||
|
||||
Output:
|
||||
5
|
||||
'''
|
||||
pass
|
||||
difference = self.difference_dict[(str(self), str(other))]
|
||||
return difference
|
||||
|
||||
|
||||
class ShardingSpec:
|
||||
|
@ -43,8 +145,9 @@ class ShardingSpec:
|
|||
Argument:
|
||||
device_mesh(DeviceMesh): A logical view of a physical mesh.
|
||||
entire_shape(torch.Size): The entire shape of tensor before sharded.
|
||||
dim_partition_dict(Dict[int, List[int]]): The key is the dimension of tensor to be sharded,
|
||||
dim_partition_dict(Dict[int, List[int]], optional): The key is the dimension of tensor to be sharded,
|
||||
and the value of the key decribe which logical axis will be sharded in that dimension.
|
||||
sharding_sequence(List[_DimSpec], optional): A straight view of ShardingSpec looks like [R, R, S0, S1].
|
||||
'''
|
||||
|
||||
def __init__(self, device_mesh, entire_shape, dim_partition_dict=None, sharding_sequence=None):
|
||||
|
@ -79,12 +182,18 @@ class ShardingSpec:
|
|||
f"find an invalid sharding axis {element} in dim_partition_dict in tensor dimension {dim}.")
|
||||
|
||||
def convert_dict_to_shard_sequence(self):
|
||||
'''
|
||||
Convert dim_partition_dict into list of _DimSpec, and assign it to sharding_sequence.
|
||||
'''
|
||||
sharding_sequence = [_DimSpec([])] * len(self.entire_shape)
|
||||
for dim, shard_list in self.dim_partition_dict.items():
|
||||
sharding_sequence[dim] = _DimSpec(shard_list)
|
||||
self.sharding_sequence = sharding_sequence
|
||||
|
||||
def convert_shard_sequence_to_dict(self):
|
||||
'''
|
||||
Convert sharding_sequence into dim_partition_dict.
|
||||
'''
|
||||
new_dim_partition_dict = {}
|
||||
for index, dim_spec in enumerate(self.sharding_sequence):
|
||||
if not dim_spec.is_replica:
|
||||
|
@ -95,6 +204,45 @@ class ShardingSpec:
|
|||
|
||||
def sharding_sequence_difference(self, other):
|
||||
'''
|
||||
This function is temporarily NOT implemented, it will be codesigned with ShapeConsistency feature.
|
||||
This function is a naive version of difference computation. It just simply accumulates difference every dimension between the
|
||||
pair of sharding sequence.
|
||||
|
||||
Example:
|
||||
dim_partition_dict = {0: [0, 1]}
|
||||
# DistSpec:
|
||||
# shard_sequence: S01,R,R
|
||||
# device_mesh_shape: (4, 4)
|
||||
sharding_spec = ShardingSpec(device_mesh, entire_shape, dim_partition_dict)
|
||||
dim_partition_dict_to_compare = {0: [0], 1: [1]}
|
||||
# DistSpec:
|
||||
# shard_sequence: S0,S1,R
|
||||
# device_mesh_shape: (4, 4)
|
||||
sharding_spec_to_compare = ShardingSpec(device_mesh, entire_shape, dim_partition_dict_to_compare)
|
||||
print(sharding_spec.sharding_sequence_difference(sharding_spec_to_compare))
|
||||
|
||||
Output:
|
||||
25
|
||||
|
||||
Argument:
|
||||
other(ShardingSpec): The ShardingSpec to compared with.
|
||||
|
||||
Return:
|
||||
difference(int): Difference between two ShardingSpec.
|
||||
'''
|
||||
pass
|
||||
assert len(self.sharding_sequence) == len(
|
||||
other.sharding_sequence), f'Cannot compare difference for two sharding specs with different length.'
|
||||
difference = 0
|
||||
for orig_dim_spec, other_dim_spec in zip(self.sharding_sequence, other.sharding_sequence):
|
||||
difference += orig_dim_spec.difference(other_dim_spec)
|
||||
return difference
|
||||
|
||||
def get_sharded_shape_per_device(self):
|
||||
|
||||
sharded_shape = list(self.entire_shape)
|
||||
for dim, shard_list in self.dim_partition_dict.items():
|
||||
mesh_list = [self.device_mesh.mesh_shape[mesh_dim] for mesh_dim in shard_list]
|
||||
shard_partitions = reduce(operator.mul, mesh_list, 1)
|
||||
assert sharded_shape[
|
||||
dim] % shard_partitions == 0, f'Cannot shard dimension {dim} into {shard_partitions} partitions.'
|
||||
sharded_shape[dim] //= shard_partitions
|
||||
return torch.Size(sharded_shape)
|
||||
|
|
|
@ -5,6 +5,90 @@ import torch.nn as nn
|
|||
from colossalai.tensor.colo_tensor import ColoTensor
|
||||
|
||||
|
||||
def all_gather_simulator(target_pair):
|
||||
'''
|
||||
Simulating all-gather operation, analyze the communication cost
|
||||
and simulate the influence of the DimSpec.
|
||||
|
||||
We don't allow uncontiguous layout, such as all-gather(S012)->S02 is NOT allowed.
|
||||
Therefore, all gather operation just remove the last element in shard list,
|
||||
e.g.:
|
||||
all-gather(S01) -> S0
|
||||
|
||||
Argument:
|
||||
target_pair(Tuple[int, List[int]]): The first element is the dimension of tensor to be sharded,
|
||||
and the second element decribes which logical axis will be sharded in that dimension.
|
||||
'''
|
||||
_, shard_list = target_pair
|
||||
new_shard_list = shard_list[:-1]
|
||||
|
||||
return new_shard_list
|
||||
|
||||
|
||||
def all_to_all_simulator(f_target_pair, b_target_pair):
|
||||
'''
|
||||
Simulating all-to-all operation, analyze the communication cost
|
||||
and simulate the influence of the DimSpec.
|
||||
|
||||
We BANNED all representations which shard_list in decreasing order,
|
||||
such as S10, so all-to-all(S0, S1) -> RS01 is NOT allowed.
|
||||
Therefore, if the behind shard_list is not None, we just extend it to the front shard_list.
|
||||
Argument:
|
||||
target_pair(Tuple[int, List[int]]): The first element is the dimension of tensor to be sharded,
|
||||
and the second element decribes which logical axis will be sharded in that dimension.
|
||||
e.g.:
|
||||
all-to-all(S0, S1) -> [S01, R]
|
||||
all-to-all(S0, R) -> [R, S0]
|
||||
Otherwise, we extend the front shard_list to behind.
|
||||
e.g.:
|
||||
all-to-all(R, S1) -> [S1, R]
|
||||
|
||||
Argument:
|
||||
target_pair(Tuple[int, List[int]]): The first element is the dimension of tensor to be sharded,
|
||||
and the second element decribes which logical axis will be sharded in that dimension.
|
||||
'''
|
||||
_, f_shard_list = f_target_pair
|
||||
_, b_shard_list = b_target_pair
|
||||
if not len(b_shard_list):
|
||||
b_shard_list.extend(f_shard_list)
|
||||
f_shard_list = []
|
||||
else:
|
||||
f_shard_list.extend(b_shard_list)
|
||||
b_shard_list = []
|
||||
|
||||
return f_shard_list, b_shard_list
|
||||
|
||||
|
||||
def shard_simulator(target_pair, legal_sharding_dims):
|
||||
'''
|
||||
Simulating shard operation, analyze the communication cost(always ZERO)
|
||||
and simulate the influence of the DimSpec.
|
||||
|
||||
We don't allow uncontiguous layout, such as shard(S0)->S02 is NOT allowed.
|
||||
In addition, We BANNED all representations which shard_list in decreasing order,
|
||||
such as S10, so shard(S0) -> S10 is NOT allowed.
|
||||
Therefore, for the R dimension, we could just append any legal sharding dim on it.
|
||||
e.g.:
|
||||
shard(R) -> S0
|
||||
For the S dimension, we need to make sure the shard_list after sharding still keep rising order.
|
||||
e.g:
|
||||
shard(S0) -> S01
|
||||
|
||||
Argument:
|
||||
target_pair(Tuple[int, List[int]]): The first element is the dimension of tensor to be sharded,
|
||||
and the second element decribes which logical axis will be sharded in that dimension.
|
||||
'''
|
||||
_, shard_list = target_pair
|
||||
shard_list_list = []
|
||||
for dim in legal_sharding_dims:
|
||||
if len(shard_list) != 0 and dim <= shard_list[-1]:
|
||||
continue
|
||||
new_shard_list = shard_list + [dim]
|
||||
shard_list_list.append(new_shard_list)
|
||||
|
||||
return shard_list_list
|
||||
|
||||
|
||||
# The function is credited to PyTorch Team
|
||||
def named_params_with_colotensor(
|
||||
module: nn.Module,
|
||||
|
|
|
@ -1,29 +1,32 @@
|
|||
from colossalai.tensor.shape_consistency import ShapeConsistencyManager
|
||||
from colossalai.tensor.shape_consistency import ShapeConsistencyManager, CollectiveCommPattern
|
||||
import torch
|
||||
from colossalai.tensor.sharding_spec import _DimSpec, ShardingSpec
|
||||
from colossalai.device.device_mesh import DeviceMesh
|
||||
|
||||
physical_mesh_id = torch.arange(0, 16).reshape(2, 8)
|
||||
mesh_shape = (4, 4)
|
||||
# [[0, 1, 2, 3],
|
||||
# [4, 5, 6, 7],
|
||||
# [8, 9, 10,11],
|
||||
# [12,13,14,15]]
|
||||
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape)
|
||||
entire_shape = torch.Size((64, 32, 16))
|
||||
shape_consistency_manager = ShapeConsistencyManager()
|
||||
|
||||
|
||||
def test_one_step_transform():
|
||||
|
||||
def test_shape_consistency():
|
||||
physical_mesh_id = torch.arange(0, 16).reshape(2, 8)
|
||||
mesh_shape = (4, 4)
|
||||
# [[0, 1, 2, 3],
|
||||
# [4, 5, 6, 7],
|
||||
# [8, 9, 10,11],
|
||||
# [12,13,14,15]]
|
||||
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape)
|
||||
entire_shape = torch.Size((4, 8, 6))
|
||||
dim_partition_dict = {0: [0], 1: [1]}
|
||||
# DistSpec:
|
||||
# shard_sequence: S0,S1,R
|
||||
# device_mesh_shape: (4, 4)
|
||||
sharding_spec = ShardingSpec(device_mesh, entire_shape, dim_partition_dict)
|
||||
shape_consistency_manager = ShapeConsistencyManager()
|
||||
|
||||
# {DistSpec:
|
||||
# shard_sequence: R,S1,R
|
||||
# device_mesh_shape: (4, 4): 0, DistSpec:
|
||||
# device_mesh_shape: (4, 4): (CommSpec:(comm_pattern:allgather, gather_dim:0, logical_process_axis:0), 0), DistSpec:
|
||||
# shard_sequence: S0,R,R
|
||||
# device_mesh_shape: (4, 4): 0}
|
||||
# device_mesh_shape: (4, 4): (CommSpec:(comm_pattern:allgather, gather_dim:1, logical_process_axis:1), 0)}
|
||||
rst_dict = shape_consistency_manager.get_all_all_gather_spec(sharding_spec, 0)
|
||||
|
||||
assert '[R, S1, R]' in [
|
||||
|
@ -39,12 +42,12 @@ def test_shape_consistency():
|
|||
# device_mesh_shape: (4, 4)
|
||||
sharding_spec_all2all = ShardingSpec(device_mesh, entire_shape, dim_partition_dict_all2all)
|
||||
# {DistSpec:
|
||||
# shard_sequence: S01,R,R
|
||||
# device_mesh_shape: (4, 4): 0, DistSpec:
|
||||
# shard_sequence: R,S1,S0
|
||||
# device_mesh_shape: (4, 4): 0, DistSpec:
|
||||
# shard_sequence: S0,R,S1
|
||||
# device_mesh_shape: (4, 4): 0}
|
||||
# shard_sequence: S01,R,R
|
||||
# device_mesh_shape: (4, 4): (CommSpec:(comm_pattern:all2all, gather_dim:1, shard_dim:0, logical_process_axis: 1), 0), DistSpec:
|
||||
# shard_sequence: R,S1,S0
|
||||
# device_mesh_shape: (4, 4): (CommSpec:(comm_pattern:all2all, gather_dim:0, shard_dim:2, logical_process_axis: 0), 0), DistSpec:
|
||||
# shard_sequence: S0,R,S1
|
||||
# device_mesh_shape: (4, 4): (CommSpec:(comm_pattern:all2all, gather_dim:1, shard_dim:2, logical_process_axis: 1), 0)}
|
||||
rst_dict_all2all = shape_consistency_manager.get_all_all_to_all_spec(sharding_spec_all2all, 0)
|
||||
|
||||
assert '[S01, R, R]' in [
|
||||
|
@ -63,12 +66,12 @@ def test_shape_consistency():
|
|||
# device_mesh_shape: (4, 4)
|
||||
sharding_spec_shard = ShardingSpec(device_mesh, entire_shape, dim_partition_shard)
|
||||
# {DistSpec:
|
||||
# shard_sequence: S01,R,R
|
||||
# device_mesh_shape: (4, 4): 0, DistSpec:
|
||||
# shard_sequence: S0,S1,R
|
||||
# device_mesh_shape: (4, 4): 0, DistSpec:
|
||||
# shard_sequence: S0,R,S1
|
||||
# device_mesh_shape: (4, 4): 0}
|
||||
# shard_sequence: S01,R,R
|
||||
# device_mesh_shape: (4, 4): (CommSpec:(comm_pattern:shard, shard_dim:0, logical_process_axis:1), 0), DistSpec:
|
||||
# shard_sequence: S0,S1,R
|
||||
# device_mesh_shape: (4, 4): (CommSpec:(comm_pattern:shard, shard_dim:1, logical_process_axis:1), 0), DistSpec:
|
||||
# shard_sequence: S0,R,S1
|
||||
# device_mesh_shape: (4, 4): (CommSpec:(comm_pattern:shard, shard_dim:2, logical_process_axis:1), 0)}
|
||||
rst_dict_shard = shape_consistency_manager.get_all_shard_spec(sharding_spec_shard, 0)
|
||||
|
||||
assert '[S01, R, R]' in [
|
||||
|
@ -82,5 +85,48 @@ def test_shape_consistency():
|
|||
]
|
||||
|
||||
|
||||
def test_shape_consistency():
|
||||
dim_partition_source = {1: [0, 1]}
|
||||
dim_partition_target = {0: [0, 1]}
|
||||
|
||||
# DistSpec:
|
||||
# shard_sequence: R,S01,R
|
||||
# device_mesh_shape: (4, 4)
|
||||
sharding_spec_source = ShardingSpec(device_mesh, entire_shape, dim_partition_source)
|
||||
|
||||
# DistSpec:
|
||||
# shard_sequence: S01,R,R
|
||||
# device_mesh_shape: (4, 4)
|
||||
sharding_spec_target = ShardingSpec(device_mesh, entire_shape, dim_partition_target)
|
||||
|
||||
transform_path, comm_action_sequence, total_cost = shape_consistency_manager.shape_consistency(
|
||||
sharding_spec_source, sharding_spec_target)
|
||||
|
||||
transform_path_str = '->'.join([str(sharding_spec.sharding_sequence) for sharding_spec in transform_path])
|
||||
assert transform_path_str == '[R, S01, R]->[R, S0, R]->[S0, R, R]->[S01, R, R]'
|
||||
|
||||
# all-gather(S01) -> S0
|
||||
assert comm_action_sequence[0].comm_pattern == CollectiveCommPattern.ALLGATHER
|
||||
assert comm_action_sequence[0].gather_dim == 1
|
||||
assert comm_action_sequence[0].logical_process_axis == 1
|
||||
|
||||
# all-to-all(R, S0) -> [S0, R]
|
||||
assert comm_action_sequence[1].comm_pattern == CollectiveCommPattern.ALLTOALL
|
||||
assert comm_action_sequence[1].gather_dim == 1
|
||||
assert comm_action_sequence[1].shard_dim == 0
|
||||
assert comm_action_sequence[1].logical_process_axis == 0
|
||||
|
||||
# shard(S0) -> [S01]
|
||||
assert comm_action_sequence[2].comm_pattern == CollectiveCommPattern.SHARD
|
||||
assert comm_action_sequence[2].shard_dim == 0
|
||||
assert comm_action_sequence[2].logical_process_axis == 1
|
||||
|
||||
assert shape_consistency_manager.cached_spec_pairs_transform_path[('[R, S01, R]',
|
||||
'[S01, R, R]')][0] == transform_path
|
||||
assert shape_consistency_manager.cached_spec_pairs_transform_path[('[R, S01, R]',
|
||||
'[S01, R, R]')][1] == comm_action_sequence
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_one_step_transform()
|
||||
test_shape_consistency()
|
||||
|
|
Loading…
Reference in New Issue