mirror of https://github.com/hpcaitech/ColossalAI
[autoparallel] add tensor constructor handler (#2082)
parent
cdf537a648
commit
0e9db368ef
|
@ -14,6 +14,7 @@ from .output_handler import OuputHandler
|
|||
from .placeholder_handler import PlacehodlerHandler
|
||||
from .registry import operator_registry
|
||||
from .reshape_handler import ReshapeHandler
|
||||
from .tensor_constructor_handler import TensorConstructorHandler
|
||||
from .unary_elementwise_handler import UnaryElementwiseHandler
|
||||
from .where_handler import WhereHandler
|
||||
|
||||
|
@ -22,5 +23,5 @@ __all__ = [
|
|||
'LayerNormModuleHandler', 'BatchNormModuleHandler', 'ConvModuleHandler', 'ConvFunctionHandler',
|
||||
'UnaryElementwiseHandler', 'ReshapeHandler', 'PlacehodlerHandler', 'OuputHandler', 'WhereHandler',
|
||||
'NormPoolingHandler', 'BinaryElementwiseHandler', 'MatMulHandler', 'operator_registry', 'ADDMMFunctionHandler',
|
||||
'GetItemHandler', 'GetattrHandler', 'ViewHandler', 'PermuteHandler'
|
||||
'GetItemHandler', 'GetattrHandler', 'ViewHandler', 'PermuteHandler', 'TensorConstructorHandler'
|
||||
]
|
||||
|
|
|
@ -11,6 +11,7 @@ __all__ = ['ReshapeHandler']
|
|||
|
||||
|
||||
@operator_registry.register(torch.flatten)
|
||||
@operator_registry.register(torch.Tensor.unsqueeze)
|
||||
@operator_registry.register(torch.nn.AdaptiveAvgPool2d)
|
||||
class ReshapeHandler(NodeHandler):
|
||||
"""
|
||||
|
|
|
@ -15,6 +15,7 @@ from .output_generator import OutputGenerator
|
|||
from .placeholder_generator import PlaceholderGenerator
|
||||
from .reshape_generator import ReshapeGenerator
|
||||
from .strategy_generator import StrategyGenerator
|
||||
from .tensor_constructor_generator import TensorConstructorGenerator
|
||||
from .unary_elementwise_generator import UnaryElementwiseGenerator
|
||||
from .where_generator import WhereGenerator
|
||||
|
||||
|
@ -23,5 +24,6 @@ __all__ = [
|
|||
'BatchedMatMulStrategyGenerator', 'ConvStrategyGenerator', 'UnaryElementwiseGenerator',
|
||||
'BatchNormStrategyGenerator', 'GetItemStrategyGenerator', 'TensorStrategyGenerator', 'TensorTupleStrategyGenerator',
|
||||
'LayerNormGenerator', 'ReshapeGenerator', 'PlaceholderGenerator', 'OutputGenerator', 'WhereGenerator',
|
||||
'ReshapeGenerator', 'NormalPoolStrategyGenerator', 'BinaryElementwiseStrategyGenerator', 'GetattrGenerator'
|
||||
'ReshapeGenerator', 'NormalPoolStrategyGenerator', 'BinaryElementwiseStrategyGenerator', 'GetattrGenerator',
|
||||
'TensorConstructorGenerator'
|
||||
]
|
||||
|
|
|
@ -0,0 +1,67 @@
|
|||
import copy
|
||||
from typing import List
|
||||
|
||||
from colossalai.auto_parallel.tensor_shard.sharding_strategy import (
|
||||
CommAction,
|
||||
CommType,
|
||||
MemoryCost,
|
||||
ShardingStrategy,
|
||||
TrainCycleItem,
|
||||
)
|
||||
from colossalai.tensor.shape_consistency import CollectiveCommPattern
|
||||
from colossalai.tensor.sharding_spec import ShardingSpec
|
||||
|
||||
from .strategy_generator import StrategyGenerator
|
||||
|
||||
__all__ = ['TensorConstructorGenerator']
|
||||
|
||||
|
||||
class TensorConstructorGenerator(StrategyGenerator):
|
||||
"""
|
||||
TensorConstructorGenerator which deals with
|
||||
the sharding strategies for tensor constructor operation, such as torch.arange.
|
||||
"""
|
||||
|
||||
def validate(self) -> bool:
|
||||
return super().validate()
|
||||
|
||||
def update_compute_cost(self, strategy: ShardingStrategy):
|
||||
compute_cost = TrainCycleItem(fwd=10, bwd=10, total=20)
|
||||
strategy.compute_cost = compute_cost
|
||||
|
||||
def update_memory_cost(self, strategy: ShardingStrategy):
|
||||
'''
|
||||
Compute the memory cost per device with this specific strategy.
|
||||
'''
|
||||
forward_size_mapping = {'output': self._compute_size_in_bytes(strategy, "output")}
|
||||
|
||||
# compute fwd cost incurred
|
||||
# fwd_cost = input + output
|
||||
fwd_activation_cost = sum([v for k, v in forward_size_mapping.items() if not self.is_param(k)])
|
||||
fwd_parameter_cost = sum([v for k, v in forward_size_mapping.items() if self.is_param(k)])
|
||||
fwd_mem_cost = MemoryCost(activation=fwd_activation_cost, parameter=fwd_parameter_cost)
|
||||
|
||||
# compute bwd cost incurred
|
||||
bwd_mem_cost = MemoryCost(activation=0, parameter=0)
|
||||
|
||||
# compute total cost
|
||||
total_mem_cost = MemoryCost(activation=fwd_activation_cost, parameter=fwd_parameter_cost)
|
||||
memory_cost = TrainCycleItem(fwd=fwd_mem_cost, bwd=bwd_mem_cost, total=total_mem_cost)
|
||||
strategy.memory_cost = memory_cost
|
||||
|
||||
def collate_strategies(self) -> List[ShardingStrategy]:
|
||||
strategy_list = []
|
||||
dim_partition_dict_mapping = {
|
||||
"output": {},
|
||||
}
|
||||
communication_action_mapping = {}
|
||||
sharding_spec_mapping = self.to_sharding_spec_mapping(dim_partition_dict_mapping)
|
||||
|
||||
name = 'Replica Tensor Constructor'
|
||||
|
||||
strategy = self.get_sharding_strategy(name=name,
|
||||
sharding_spec_mapping=sharding_spec_mapping,
|
||||
communication_action_mapping=communication_action_mapping)
|
||||
strategy_list.append(strategy)
|
||||
|
||||
return strategy_list
|
|
@ -0,0 +1,32 @@
|
|||
from typing import Dict, List
|
||||
|
||||
import torch
|
||||
|
||||
from ..sharding_strategy import OperationData, OperationDataType
|
||||
from .node_handler import NodeHandler
|
||||
from .registry import operator_registry
|
||||
from .strategy import StrategyGenerator
|
||||
from .strategy.tensor_constructor_generator import TensorConstructorGenerator
|
||||
|
||||
__all__ = ['TensorConstructorHandler']
|
||||
|
||||
|
||||
@operator_registry.register(torch.arange)
|
||||
class TensorConstructorHandler(NodeHandler):
|
||||
"""
|
||||
A TensorConstructorHandler which deals with the sharding strategies for tensor constructor operations, such as torch.arange.
|
||||
"""
|
||||
|
||||
def get_strategy_generator(self) -> List[StrategyGenerator]:
|
||||
op_data_mapping = self.get_operation_data_mapping()
|
||||
generators = []
|
||||
generators.append(TensorConstructorGenerator(op_data_mapping, self.device_mesh))
|
||||
return generators
|
||||
|
||||
def get_operation_data_mapping(self) -> Dict[str, OperationData]:
|
||||
output_data = self.node._meta_data
|
||||
physical_output_operand = OperationData(name=str(self.node), type=OperationDataType.OUTPUT, data=output_data)
|
||||
|
||||
mapping = {"output": physical_output_operand}
|
||||
|
||||
return mapping
|
|
@ -0,0 +1,66 @@
|
|||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from colossalai.auto_parallel.tensor_shard.node_handler.tensor_constructor_handler import TensorConstructorHandler
|
||||
from colossalai.auto_parallel.tensor_shard.sharding_strategy import OperationData, OperationDataType, StrategiesVector
|
||||
from colossalai.device.device_mesh import DeviceMesh
|
||||
from colossalai.fx import ColoGraphModule, ColoTracer
|
||||
|
||||
|
||||
class TensorConstructorModel(nn.Module):
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
def forward(self, x):
|
||||
arange_node = torch.arange(x.size()[0])
|
||||
x = x + arange_node
|
||||
return x
|
||||
|
||||
|
||||
def test_where_handler():
|
||||
model = TensorConstructorModel()
|
||||
tracer = ColoTracer()
|
||||
# graph():
|
||||
# %x : torch.Tensor [#users=2] = placeholder[target=x]
|
||||
# %size : [#users=1] = call_method[target=size](args = (%x,), kwargs = {})
|
||||
# %getitem : [#users=1] = call_function[target=operator.getitem](args = (%size, 0), kwargs = {})
|
||||
# %arange : [#users=1] = call_function[target=torch.arange](args = (%getitem,), kwargs = {})
|
||||
# %add : [#users=1] = call_function[target=operator.add](args = (%x, %arange), kwargs = {})
|
||||
# return add
|
||||
graph = tracer.trace(model, meta_args={
|
||||
"x": torch.rand(10).to('meta'),
|
||||
})
|
||||
gm = ColoGraphModule(model, graph)
|
||||
physical_mesh_id = torch.arange(0, 4)
|
||||
|
||||
mesh_shape = (2, 2)
|
||||
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape)
|
||||
arange_node = list(graph.nodes)[3]
|
||||
strategies_vector = StrategiesVector(arange_node)
|
||||
|
||||
# build handler
|
||||
handler = TensorConstructorHandler(node=arange_node, device_mesh=device_mesh, strategies_vector=strategies_vector)
|
||||
|
||||
# check operation data mapping
|
||||
mapping = handler.get_operation_data_mapping()
|
||||
|
||||
for name, op_data in mapping.items():
|
||||
op_data: OperationData
|
||||
# make sure they have valid values
|
||||
assert op_data.logical_shape is not None
|
||||
assert op_data.data is not None
|
||||
|
||||
assert mapping['output'].name == "arange"
|
||||
assert mapping['output'].data.is_meta
|
||||
assert mapping['output'].data.shape == torch.Size([10])
|
||||
assert mapping['output'].type == OperationDataType.OUTPUT
|
||||
|
||||
handler.register_strategy(compute_resharding_cost=False)
|
||||
strategy_name_list = [val.name for val in strategies_vector]
|
||||
|
||||
assert 'Replica Tensor Constructor' in strategy_name_list
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_where_handler()
|
Loading…
Reference in New Issue