[autoparallel] add tensor constructor handler (#2082)

pull/2083/head
YuliangLiu0306 2022-12-06 10:20:10 +08:00 committed by GitHub
parent cdf537a648
commit 0e9db368ef
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 171 additions and 2 deletions

View File

@ -14,6 +14,7 @@ from .output_handler import OuputHandler
from .placeholder_handler import PlacehodlerHandler from .placeholder_handler import PlacehodlerHandler
from .registry import operator_registry from .registry import operator_registry
from .reshape_handler import ReshapeHandler from .reshape_handler import ReshapeHandler
from .tensor_constructor_handler import TensorConstructorHandler
from .unary_elementwise_handler import UnaryElementwiseHandler from .unary_elementwise_handler import UnaryElementwiseHandler
from .where_handler import WhereHandler from .where_handler import WhereHandler
@ -22,5 +23,5 @@ __all__ = [
'LayerNormModuleHandler', 'BatchNormModuleHandler', 'ConvModuleHandler', 'ConvFunctionHandler', 'LayerNormModuleHandler', 'BatchNormModuleHandler', 'ConvModuleHandler', 'ConvFunctionHandler',
'UnaryElementwiseHandler', 'ReshapeHandler', 'PlacehodlerHandler', 'OuputHandler', 'WhereHandler', 'UnaryElementwiseHandler', 'ReshapeHandler', 'PlacehodlerHandler', 'OuputHandler', 'WhereHandler',
'NormPoolingHandler', 'BinaryElementwiseHandler', 'MatMulHandler', 'operator_registry', 'ADDMMFunctionHandler', 'NormPoolingHandler', 'BinaryElementwiseHandler', 'MatMulHandler', 'operator_registry', 'ADDMMFunctionHandler',
'GetItemHandler', 'GetattrHandler', 'ViewHandler', 'PermuteHandler' 'GetItemHandler', 'GetattrHandler', 'ViewHandler', 'PermuteHandler', 'TensorConstructorHandler'
] ]

View File

@ -11,6 +11,7 @@ __all__ = ['ReshapeHandler']
@operator_registry.register(torch.flatten) @operator_registry.register(torch.flatten)
@operator_registry.register(torch.Tensor.unsqueeze)
@operator_registry.register(torch.nn.AdaptiveAvgPool2d) @operator_registry.register(torch.nn.AdaptiveAvgPool2d)
class ReshapeHandler(NodeHandler): class ReshapeHandler(NodeHandler):
""" """

View File

@ -15,6 +15,7 @@ from .output_generator import OutputGenerator
from .placeholder_generator import PlaceholderGenerator from .placeholder_generator import PlaceholderGenerator
from .reshape_generator import ReshapeGenerator from .reshape_generator import ReshapeGenerator
from .strategy_generator import StrategyGenerator from .strategy_generator import StrategyGenerator
from .tensor_constructor_generator import TensorConstructorGenerator
from .unary_elementwise_generator import UnaryElementwiseGenerator from .unary_elementwise_generator import UnaryElementwiseGenerator
from .where_generator import WhereGenerator from .where_generator import WhereGenerator
@ -23,5 +24,6 @@ __all__ = [
'BatchedMatMulStrategyGenerator', 'ConvStrategyGenerator', 'UnaryElementwiseGenerator', 'BatchedMatMulStrategyGenerator', 'ConvStrategyGenerator', 'UnaryElementwiseGenerator',
'BatchNormStrategyGenerator', 'GetItemStrategyGenerator', 'TensorStrategyGenerator', 'TensorTupleStrategyGenerator', 'BatchNormStrategyGenerator', 'GetItemStrategyGenerator', 'TensorStrategyGenerator', 'TensorTupleStrategyGenerator',
'LayerNormGenerator', 'ReshapeGenerator', 'PlaceholderGenerator', 'OutputGenerator', 'WhereGenerator', 'LayerNormGenerator', 'ReshapeGenerator', 'PlaceholderGenerator', 'OutputGenerator', 'WhereGenerator',
'ReshapeGenerator', 'NormalPoolStrategyGenerator', 'BinaryElementwiseStrategyGenerator', 'GetattrGenerator' 'ReshapeGenerator', 'NormalPoolStrategyGenerator', 'BinaryElementwiseStrategyGenerator', 'GetattrGenerator',
'TensorConstructorGenerator'
] ]

View File

@ -0,0 +1,67 @@
import copy
from typing import List
from colossalai.auto_parallel.tensor_shard.sharding_strategy import (
CommAction,
CommType,
MemoryCost,
ShardingStrategy,
TrainCycleItem,
)
from colossalai.tensor.shape_consistency import CollectiveCommPattern
from colossalai.tensor.sharding_spec import ShardingSpec
from .strategy_generator import StrategyGenerator
__all__ = ['TensorConstructorGenerator']
class TensorConstructorGenerator(StrategyGenerator):
"""
TensorConstructorGenerator which deals with
the sharding strategies for tensor constructor operation, such as torch.arange.
"""
def validate(self) -> bool:
return super().validate()
def update_compute_cost(self, strategy: ShardingStrategy):
compute_cost = TrainCycleItem(fwd=10, bwd=10, total=20)
strategy.compute_cost = compute_cost
def update_memory_cost(self, strategy: ShardingStrategy):
'''
Compute the memory cost per device with this specific strategy.
'''
forward_size_mapping = {'output': self._compute_size_in_bytes(strategy, "output")}
# compute fwd cost incurred
# fwd_cost = input + output
fwd_activation_cost = sum([v for k, v in forward_size_mapping.items() if not self.is_param(k)])
fwd_parameter_cost = sum([v for k, v in forward_size_mapping.items() if self.is_param(k)])
fwd_mem_cost = MemoryCost(activation=fwd_activation_cost, parameter=fwd_parameter_cost)
# compute bwd cost incurred
bwd_mem_cost = MemoryCost(activation=0, parameter=0)
# compute total cost
total_mem_cost = MemoryCost(activation=fwd_activation_cost, parameter=fwd_parameter_cost)
memory_cost = TrainCycleItem(fwd=fwd_mem_cost, bwd=bwd_mem_cost, total=total_mem_cost)
strategy.memory_cost = memory_cost
def collate_strategies(self) -> List[ShardingStrategy]:
strategy_list = []
dim_partition_dict_mapping = {
"output": {},
}
communication_action_mapping = {}
sharding_spec_mapping = self.to_sharding_spec_mapping(dim_partition_dict_mapping)
name = 'Replica Tensor Constructor'
strategy = self.get_sharding_strategy(name=name,
sharding_spec_mapping=sharding_spec_mapping,
communication_action_mapping=communication_action_mapping)
strategy_list.append(strategy)
return strategy_list

View File

@ -0,0 +1,32 @@
from typing import Dict, List
import torch
from ..sharding_strategy import OperationData, OperationDataType
from .node_handler import NodeHandler
from .registry import operator_registry
from .strategy import StrategyGenerator
from .strategy.tensor_constructor_generator import TensorConstructorGenerator
__all__ = ['TensorConstructorHandler']
@operator_registry.register(torch.arange)
class TensorConstructorHandler(NodeHandler):
"""
A TensorConstructorHandler which deals with the sharding strategies for tensor constructor operations, such as torch.arange.
"""
def get_strategy_generator(self) -> List[StrategyGenerator]:
op_data_mapping = self.get_operation_data_mapping()
generators = []
generators.append(TensorConstructorGenerator(op_data_mapping, self.device_mesh))
return generators
def get_operation_data_mapping(self) -> Dict[str, OperationData]:
output_data = self.node._meta_data
physical_output_operand = OperationData(name=str(self.node), type=OperationDataType.OUTPUT, data=output_data)
mapping = {"output": physical_output_operand}
return mapping

View File

@ -0,0 +1,66 @@
import torch
import torch.nn as nn
from colossalai.auto_parallel.tensor_shard.node_handler.tensor_constructor_handler import TensorConstructorHandler
from colossalai.auto_parallel.tensor_shard.sharding_strategy import OperationData, OperationDataType, StrategiesVector
from colossalai.device.device_mesh import DeviceMesh
from colossalai.fx import ColoGraphModule, ColoTracer
class TensorConstructorModel(nn.Module):
def __init__(self):
super().__init__()
def forward(self, x):
arange_node = torch.arange(x.size()[0])
x = x + arange_node
return x
def test_where_handler():
model = TensorConstructorModel()
tracer = ColoTracer()
# graph():
# %x : torch.Tensor [#users=2] = placeholder[target=x]
# %size : [#users=1] = call_method[target=size](args = (%x,), kwargs = {})
# %getitem : [#users=1] = call_function[target=operator.getitem](args = (%size, 0), kwargs = {})
# %arange : [#users=1] = call_function[target=torch.arange](args = (%getitem,), kwargs = {})
# %add : [#users=1] = call_function[target=operator.add](args = (%x, %arange), kwargs = {})
# return add
graph = tracer.trace(model, meta_args={
"x": torch.rand(10).to('meta'),
})
gm = ColoGraphModule(model, graph)
physical_mesh_id = torch.arange(0, 4)
mesh_shape = (2, 2)
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape)
arange_node = list(graph.nodes)[3]
strategies_vector = StrategiesVector(arange_node)
# build handler
handler = TensorConstructorHandler(node=arange_node, device_mesh=device_mesh, strategies_vector=strategies_vector)
# check operation data mapping
mapping = handler.get_operation_data_mapping()
for name, op_data in mapping.items():
op_data: OperationData
# make sure they have valid values
assert op_data.logical_shape is not None
assert op_data.data is not None
assert mapping['output'].name == "arange"
assert mapping['output'].data.is_meta
assert mapping['output'].data.shape == torch.Size([10])
assert mapping['output'].type == OperationDataType.OUTPUT
handler.register_strategy(compute_resharding_cost=False)
strategy_name_list = [val.name for val in strategies_vector]
assert 'Replica Tensor Constructor' in strategy_name_list
if __name__ == '__main__':
test_where_handler()