mirror of https://github.com/hpcaitech/ColossalAI
[fx] fix test and algorithm bugs in activation checkpointing. (#1451)
* [fx] modify the calculation of node_size in MetaInfoProp for activation checkpointing usages * [fx] modify the calculation of node_size in MetaInfoProp for activation checkpointing usages * [fx] modify the calculation of node_size in MetaInfoProp for activation checkpointing usages * [fx] merge development into main (#1) * [fx] activation checkpointing using Chen strategies. * [fx] add test for ckpt_solver_chen * [fx] add vanilla activation checkpoint search with test on resnet and densenet * [fx] add a namespace code for solver_chen. * [fx] fix the false interpretation of algorithm 3 in https://arxiv.org/abs/1604.06174. * [fx] fix lowercase naming conventions. * [fx] simplify test for ckpt. * [fx] fix test and algorithm bugs in activation checkpointing. * mend [fx] fix test and algorithm bugs in activation checkpointing. * mend [fx] fix test and algorithm bugs in activation checkpointing. * mend [fx] fix test and algorithm bugs in activation checkpointing. * mend [fx] fix test and algorithm bugs in activation checkpointing. * [fx] polish ckpt_test. * [fx] polish ckpt_test. * [fx] polish ckpt_test.pull/1473/head
parent
b1553fdf96
commit
0dbd61c29b
|
@ -1,4 +1,4 @@
|
|||
from typing import Set, Tuple
|
||||
from typing import List, Set, Tuple
|
||||
import torch
|
||||
from torch.fx import GraphModule
|
||||
import math
|
||||
|
@ -6,6 +6,14 @@ import math
|
|||
__all__ = ['chen_greedy', 'chen_sqrtn']
|
||||
|
||||
|
||||
def _all_potential_ckpt_nodes(gm: GraphModule) -> List:
|
||||
ckpt_nodes = []
|
||||
for n in gm.graph.nodes:
|
||||
if n.op == 'call_module':
|
||||
ckpt_nodes.append(n)
|
||||
return ckpt_nodes
|
||||
|
||||
|
||||
def chen_greedy(gm: GraphModule) -> GraphModule:
|
||||
"""
|
||||
This is the simple implementation of Algorithm 3 in https://arxiv.org/abs/1604.06174.
|
||||
|
@ -31,36 +39,40 @@ def chen_greedy(gm: GraphModule) -> GraphModule:
|
|||
b_min, b_max = math.floor(b_approx / math.sqrt(2)), math.ceil(b_approx * math.sqrt(2))
|
||||
b_opt = math.inf
|
||||
for b in range(b_min, b_max, (b_max - b_min) // num_grids):
|
||||
ckpt, b_approx = run_chen_greedy(b)
|
||||
ckpt_intv, b_approx = run_chen_greedy(b)
|
||||
if b_approx < b_opt:
|
||||
b_opt = b_approx
|
||||
ckpt_opt = ckpt
|
||||
ckpt_opt = ckpt_intv
|
||||
return ckpt_opt
|
||||
|
||||
def run_chen_greedy(b: int = 0) -> Tuple[Set, int]:
|
||||
"""
|
||||
This is the simple implementation of Algorithm 3 in https://arxiv.org/abs/1604.06174.
|
||||
"""
|
||||
ckpt = set()
|
||||
ckpt_nodes = _all_potential_ckpt_nodes(gm)
|
||||
ckpt_intv = []
|
||||
temp = 0
|
||||
x = 0
|
||||
y = 0
|
||||
prev_idx = 2
|
||||
for (idx, n) in enumerate(gm.graph.nodes):
|
||||
temp += getattr(n, 'activation_size')
|
||||
y = max(y, temp)
|
||||
if temp > b:
|
||||
if temp > b and n in ckpt_nodes:
|
||||
x += getattr(n, 'activation_size')
|
||||
temp = 0
|
||||
ckpt.add(idx)
|
||||
return ckpt, math.floor(math.sqrt(x * y))
|
||||
ckpt_intv.append((prev_idx, idx + 1))
|
||||
prev_idx = idx + 1
|
||||
return ckpt_intv, math.floor(math.sqrt(x * y))
|
||||
|
||||
gm.graph.lint() # make sure nodes are in topological order
|
||||
ckpt = grid_search(num_grids=6)
|
||||
i = 0
|
||||
for idx, n in enumerate(gm.graph.nodes):
|
||||
if idx in ckpt:
|
||||
setattr(n, 'activation_checkpoint', str(i))
|
||||
i += 1
|
||||
node_list = list(gm.graph.nodes)
|
||||
for i, seg in enumerate(ckpt):
|
||||
for idx in range(*seg):
|
||||
n = node_list[idx]
|
||||
if n.op in ['call_module', 'call_method', 'call_function']:
|
||||
setattr(n, 'activation_checkpoint', str(i))
|
||||
gm.recompile()
|
||||
return gm
|
||||
|
||||
|
@ -82,7 +94,9 @@ def chen_sqrtn(gm: GraphModule) -> GraphModule:
|
|||
gm.graph.lint() # make sure nodes are in topological order
|
||||
k = int(len(gm.graph.nodes)**0.5) # take approximately sqrt(n) checkpoints
|
||||
for idx, n in enumerate(gm.graph.nodes):
|
||||
if (idx + 1) % k == 0:
|
||||
# We should not add act_ckpt to the placeholder
|
||||
# The last segment should not be checkpointed
|
||||
if n.op != 'placeholder' and (idx + 1) // k < k:
|
||||
setattr(n, 'activation_checkpoint', str((idx + 1) // k))
|
||||
gm.recompile()
|
||||
return gm
|
||||
|
|
|
@ -1,12 +1,25 @@
|
|||
from ctypes import Union
|
||||
from colossalai.fx.passes.algorithms import chen_greedy, chen_sqrtn
|
||||
from typing import Callable
|
||||
import copy
|
||||
import torch
|
||||
import torch.multiprocessing as mp
|
||||
import torchvision.models as tm
|
||||
from colossalai.fx import ColoTracer
|
||||
from torch.fx import GraphModule
|
||||
import colossalai
|
||||
from colossalai.fx import ColoTracer
|
||||
from colossalai.fx.passes.meta_info_prop import MetaInfoProp
|
||||
from colossalai.fx.passes.algorithms import chen_greedy, chen_sqrtn
|
||||
from colossalai.utils import free_port
|
||||
from colossalai.core import global_context as gpc
|
||||
import pytest
|
||||
|
||||
try:
|
||||
from colossalai.fx.codegen import ActivationCheckpointCodeGen
|
||||
with_codegen = True
|
||||
except:
|
||||
# fall back to older pytorch version
|
||||
from colossalai.fx.codegen import python_code_with_activation_checkpoint
|
||||
with_codegen = False
|
||||
|
||||
SOLVERS = [chen_greedy, chen_sqrtn]
|
||||
|
||||
|
||||
|
@ -18,37 +31,80 @@ def _is_activation_checkpoint_available(gm: GraphModule):
|
|||
|
||||
def _is_all_gradient_close(m: torch.nn.Module, gm: GraphModule):
|
||||
for m_p, gm_p in zip(m.parameters(), gm.parameters()):
|
||||
if not torch.allclose(m_p, gm_p):
|
||||
if not torch.allclose(m_p.grad, gm_p.grad):
|
||||
return False
|
||||
return True
|
||||
|
||||
|
||||
def test_ckpt_solver():
|
||||
def check_backward_consistency(m: torch.nn.Module, gm: GraphModule, solver: Callable[[GraphModule], GraphModule],
|
||||
model_cls: Callable[[], torch.nn.Module]):
|
||||
criterion = torch.nn.MSELoss()
|
||||
data = torch.rand(2, 3, 32, 32)
|
||||
label = torch.rand(2, 5)
|
||||
loss = criterion(m(data), label)
|
||||
loss.backward()
|
||||
loss = criterion(gm(data), label)
|
||||
loss.backward()
|
||||
assert _is_all_gradient_close(m, gm), f'Solver {solver} did not work correctly in backward pass on {model_cls}'
|
||||
|
||||
|
||||
def _run_ckpt_solver(rank):
|
||||
colossalai.launch(config={}, rank=rank, world_size=1, host='localhost', port=free_port(), backend='nccl')
|
||||
MODEL_LIST = [tm.resnet18, tm.densenet121]
|
||||
|
||||
torch.backends.cudnn.deterministic = True
|
||||
|
||||
tracer = ColoTracer()
|
||||
data = torch.rand(1, 3, 224, 224)
|
||||
label = torch.rand(1, 1000)
|
||||
tracer = ColoTracer(trace_act_ckpt=False)
|
||||
|
||||
data = torch.rand(2, 3, 32, 32)
|
||||
for solver in SOLVERS:
|
||||
for model_cls in MODEL_LIST:
|
||||
model = model_cls()
|
||||
criterion = torch.nn.MSELoss()
|
||||
graph = tracer.trace(root=model)
|
||||
gm = GraphModule(model, graph, model.__class__.__name__)
|
||||
m = model_cls(num_classes=5)
|
||||
graph = tracer.trace(root=m)
|
||||
gm = GraphModule(copy.deepcopy(m), graph, m.__class__.__name__)
|
||||
MetaInfoProp(gm).run(data)
|
||||
codegen = ActivationCheckpointCodeGen()
|
||||
gm.graph.set_codegen(codegen)
|
||||
gm = solver(gm)
|
||||
assert _is_activation_checkpoint_available(
|
||||
gm), f"Solver {solver} did not annotate {model_cls} with any activation checkpoints"
|
||||
loss = criterion(model(data), label)
|
||||
loss.backward()
|
||||
loss = criterion(gm(data), label)
|
||||
loss.backward()
|
||||
assert _is_all_gradient_close(model,
|
||||
gm), f'Solver {solver} did not work correctly in backward pass on {model_cls}'
|
||||
check_backward_consistency(m, gm, solver, model_cls)
|
||||
|
||||
|
||||
@pytest.mark.skip
|
||||
@pytest.mark.skipif(not with_codegen, reason='torch version is lower than 1.12.0')
|
||||
def test_ckpt_solver():
|
||||
mp.spawn(_run_ckpt_solver, nprocs=1)
|
||||
|
||||
|
||||
def _run_ckpt_solver_torch11(rank):
|
||||
colossalai.launch(config={}, rank=rank, world_size=1, host='localhost', port=free_port(), backend='nccl')
|
||||
MODEL_LIST = [tm.resnet18, tm.densenet121]
|
||||
|
||||
torch.backends.cudnn.deterministic = True
|
||||
|
||||
tracer = ColoTracer(trace_act_ckpt=False)
|
||||
|
||||
data = torch.rand(2, 3, 32, 32)
|
||||
for solver in SOLVERS:
|
||||
for model_cls in MODEL_LIST:
|
||||
m = model_cls(num_classes=5)
|
||||
graph = tracer.trace(root=m)
|
||||
gm = GraphModule(copy.deepcopy(m), graph, m.__class__.__name__)
|
||||
MetaInfoProp(gm).run(data)
|
||||
gm.graph._python_code = python_code_with_activation_checkpoint.__get__(graph)
|
||||
gm = solver(gm)
|
||||
assert _is_activation_checkpoint_available(
|
||||
gm), f"Solver {solver} did not annotate {model_cls} with any activation checkpoints"
|
||||
check_backward_consistency(m, gm, solver, model_cls)
|
||||
|
||||
|
||||
@pytest.mark.skip
|
||||
@pytest.mark.skipif(with_codegen, reason='torch version is equal to or higher than 1.12.0')
|
||||
def test_ckpt_solver_torch11():
|
||||
mp.spawn(_run_ckpt_solver_torch11, nprocs=1)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_ckpt_solver()
|
||||
test_ckpt_solver_torch11()
|
||||
|
|
Loading…
Reference in New Issue