[zero] add has_inf_or_nan in AgChunk; enhance the unit test of AgChunk (#1426)

pull/1424/head^2
HELSON 2022-08-10 11:37:28 +08:00 committed by GitHub
parent 33f0744d51
commit 0d212183c4
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 90 additions and 11 deletions

View File

@ -1,6 +1,6 @@
import torch
import torch.distributed as dist
from typing import Optional, Dict
from typing import Optional, Dict, List
from colossalai.utils import get_current_device
from colossalai.tensor import ProcessGroup as ColoProcessGroup
@ -45,10 +45,11 @@ class AgChunk:
self.shard_size = chunk_size // self.pg_size
self.shard_begin = self.shard_size * self.pg_rank
self.shard_end = self.shard_begin + self.shard_size
self.valid_end = self.shard_size
self.dtype = dtype
device = init_device or get_current_device()
self.chunk_temp = torch.empty(chunk_size, dtype=dtype, device=device)
self.chunk_temp = torch.zeros(chunk_size, dtype=dtype, device=device) # keep all zero
self.chunk_total = None # we force chunk_total located in CUDA
self.cuda_shard = None # using two attributes for the better interpretation
self.cpu_shard = None
@ -114,7 +115,7 @@ class AgChunk:
if self.chunk_temp is not None:
return self.chunk_temp.device.type
else:
if self.chunk_total is not None:
if self.is_gathered:
return 'cuda'
elif self.cuda_shard is not None:
return 'cuda'
@ -153,6 +154,12 @@ class AgChunk:
# sanity check
assert self.chunk_temp is not None
# calculate the valid end for each shard
if self.utilized_size <= self.shard_begin:
self.valid_end = 0
elif self.utilized_size < self.shard_end:
self.valid_end = self.utilized_size - self.shard_begin
if self.chunk_temp.device.type == 'cpu':
self.chunk_total = self.chunk_temp.to(get_current_device())
else:
@ -257,7 +264,7 @@ class AgChunk:
self.shard_size, dtype=self.dtype, device=get_current_device())
input_list = list(torch.chunk(self.chunk_total, chunks=self.pg_size, dim=0))
dist.reduce_scatter(self.cuda_shard, input_list, self.torch_pg)
dist.reduce_scatter(self.cuda_shard, input_list, group=self.torch_pg)
free_storage(self.chunk_total)
self.is_gathered = False
@ -298,17 +305,38 @@ class AgChunk:
assert self.is_gathered
tensor_info = self.tensors_info[tensor]
self.chunk_total[tensor_info.offset:tensor_info.end].copy_(data_slice.flatten())
self.chunk_total[tensor_info.offset:tensor_info.end].copy_(data_slice.data.flatten())
tensor.data = self.chunk_total[tensor_info.offset:tensor_info.end].view(tensor.shape)
@property
def can_move(self) -> bool:
return not self.is_gathered
@property
def can_release(self) -> bool:
return self.tensors_state_monitor[TensorState.HOLD] == self.num_tensors
if self.keep_gathered:
return False
else:
return self.tensors_state_monitor[TensorState.HOLD] + \
self.tensors_state_monitor[TensorState.HOLD_AFTER_BWD] == self.num_tensors
@property
def can_reduce(self):
return self.tensors_state_monitor[TensorState.READY_FOR_REDUCE] == self.num_tensors
@property
def has_inf_or_nan(self) -> bool:
"""
Check if the chunk has inf or nan values in CUDA.
"""
if self.is_gathered:
valid_tensor = self.chunk_total[: self.utilized_size]
else:
assert self.cuda_shard is not None # only check in CUDA
valid_tensor = self.cuda_shard[: self.valid_end]
return torch.isinf(valid_tensor).any().item() | torch.isnan(valid_tensor).any().item()
def __gather(self):
if not self.is_gathered:
# sanity check
@ -375,6 +403,12 @@ class AgChunk:
if prev_state is None or tensor_info.state == prev_state:
self.__update_one_tensor_info(tensor_info, next_state)
def __hash__(self) -> int:
return hash(id(self))
def __eq__(self, __o: object) -> bool:
return self is __o
def __repr__(self, detailed: bool = False):
output = [
"AgChunk Information:\n",
@ -413,3 +447,6 @@ class AgChunk:
output.append("\t\t# of {}: {}\n".format(st, self.tensors_state_monitor[st]))
return ''.join(output)
def get_tensors(self) -> List[torch.Tensor]:
return list(self.tensors_info.keys())

View File

@ -2,16 +2,24 @@ import torch
import colossalai
import pytest
import torch.multiprocessing as mp
import torch.distributed as dist
from functools import partial
from colossalai.testing import rerun_if_address_is_in_use, parameterize
from colossalai.utils import free_port, get_current_device
from colossalai.tensor import ProcessGroup as ColoProcessGroup
from colossalai.tensor import ColoParameter
from colossalai.gemini import TensorState
from colossalai.gemini.ag_chunk import AgChunk
def dist_sum(x):
temp = torch.tensor([x], device=get_current_device())
dist.all_reduce(temp)
return temp.item()
def add_param(param_list, param_cp_list, *args, **kwargs):
param = ColoParameter(torch.empty(*args, **kwargs))
param = ColoParameter(torch.randn(*args, **kwargs))
param_list.append(param)
param_cp_list.append(param.clone())
@ -27,7 +35,7 @@ def check_euqal(param, param_cp):
@parameterize('init_device', [None, torch.device('cpu')])
@parameterize('keep_gathered', [True, False])
@parameterize('pin_memory', [True, False])
def exam_chunk_init(init_device, keep_gathered, pin_memory):
def exam_chunk_basic(init_device, keep_gathered, pin_memory):
world_size = torch.distributed.get_world_size()
pg = ColoProcessGroup()
my_chunk = AgChunk(
@ -56,17 +64,51 @@ def exam_chunk_init(init_device, keep_gathered, pin_memory):
if keep_gathered is False:
assert my_chunk.cpu_shard.size(0) == 1024 // world_size
assert my_chunk.device_type == 'cpu'
assert my_chunk.can_move
my_chunk.shard_move(get_current_device())
else:
assert my_chunk.chunk_total.size(0) == 1024
assert my_chunk.device_type == 'cuda'
assert not my_chunk.can_move
assert dist_sum(my_chunk.valid_end) == my_chunk.utilized_size
flag = my_chunk.has_inf_or_nan
assert not flag, "has_inf_or_nan is {}".format(flag)
my_chunk.access_chunk()
assert my_chunk.device_type == 'cuda'
for param, param_cp in zip(param_list, param_cp_list):
check_euqal(param, param_cp)
assert my_chunk.tensors_state_monitor[TensorState.HOLD] == 4
my_chunk.tensor_trans_state(param_list[0], TensorState.COMPUTE)
assert my_chunk.tensors_state_monitor[TensorState.HOLD] == 3
assert my_chunk.tensors_state_monitor[TensorState.COMPUTE] == 1
assert not my_chunk.can_release
for param in param_list:
my_chunk.tensor_trans_state(param, TensorState.COMPUTE)
my_chunk.tensor_trans_state(param, TensorState.READY_FOR_REDUCE)
assert my_chunk.tensors_state_monitor[TensorState.READY_FOR_REDUCE] == 4
assert my_chunk.can_reduce
my_chunk.reduce()
assert my_chunk.tensors_state_monitor[TensorState.HOLD] == 4
if keep_gathered is False:
assert my_chunk.cuda_shard.size(0) == 1024 // world_size
assert my_chunk.device_type == 'cuda'
assert my_chunk.can_move
else:
assert my_chunk.chunk_total.size(0) == 1024
assert my_chunk.device_type == 'cuda'
assert not my_chunk.can_move
def run_dist(rank, world_size, port):
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
exam_chunk_init()
exam_chunk_basic()
@pytest.mark.dist
@ -78,4 +120,4 @@ def test_chunk_function(world_size):
if __name__ == '__main__':
test_chunk_function(2)
test_chunk_function(4)