mirror of https://github.com/hpcaitech/ColossalAI
[hotfix] ZeroDDP use new process group (#1333)
* process group supports getting ranks in group * chunk mgr receives a process group * update unit test * fix unit testspull/1335/head
parent
11d1436a67
commit
0c51ff2c13
|
@ -4,9 +4,8 @@ from dataclasses import dataclass
|
|||
from enum import Enum
|
||||
from typing import Optional, Dict, List
|
||||
|
||||
from colossalai.core import global_context as gpc
|
||||
from colossalai.context import ParallelMode
|
||||
from colossalai.utils import get_current_device
|
||||
from colossalai.tensor import ProcessGroup as ColoProcessGroup
|
||||
|
||||
|
||||
class TensorState(Enum):
|
||||
|
@ -65,14 +64,16 @@ class Chunk:
|
|||
def __init__(self,
|
||||
chunk_size: int,
|
||||
src_rank: int,
|
||||
process_group: ColoProcessGroup,
|
||||
dtype: torch.dtype,
|
||||
init_device: Optional[torch.device] = None,
|
||||
force_data_on_cuda: bool = False) -> None:
|
||||
self.size = chunk_size
|
||||
self.utilized_size = 0
|
||||
self.src_rank = src_rank
|
||||
self.is_src_rank = gpc.get_local_rank(ParallelMode.DATA) == src_rank
|
||||
self.global_src_rank = gpc.get_ranks_in_group(ParallelMode.DATA)[src_rank]
|
||||
self.process_group = process_group
|
||||
self.is_src_rank = process_group.dp_local_rank() == src_rank
|
||||
self.global_src_rank = process_group.get_ranks_in_dp()[src_rank]
|
||||
self.dtype = dtype
|
||||
device = init_device or get_current_device()
|
||||
if force_data_on_cuda:
|
||||
|
@ -150,7 +151,7 @@ class Chunk:
|
|||
if not self.is_src_rank:
|
||||
alloc_storage(self._payload)
|
||||
self.move_device(get_current_device(), update_ptr=False)
|
||||
dist.broadcast(self.data, self.global_src_rank, group=gpc.get_group(ParallelMode.DATA))
|
||||
dist.broadcast(self.data, self.global_src_rank, group=self.process_group.dp_process_group())
|
||||
|
||||
# update tensor meta info
|
||||
self._update_tensors_ptr()
|
||||
|
@ -193,9 +194,9 @@ class Chunk:
|
|||
"""
|
||||
self.move_device(get_current_device(), update_ptr=False)
|
||||
if is_all_reduce:
|
||||
dist.all_reduce(self.data, group=gpc.get_group(ParallelMode.DATA))
|
||||
dist.all_reduce(self.data, group=self.process_group.dp_process_group())
|
||||
else:
|
||||
dist.reduce(self.data, self.global_src_rank, group=gpc.get_group(ParallelMode.DATA))
|
||||
dist.reduce(self.data, self.global_src_rank, group=self.process_group.dp_process_group())
|
||||
self._update_tensors_ptr()
|
||||
self._update_tensors_state(TensorState.HOLD)
|
||||
|
||||
|
@ -216,7 +217,7 @@ class Chunk:
|
|||
# invalid calls will be ignored and nothing changes
|
||||
if (self.tensors_info[tensor].state, tensor_state) not in STATE_TRANS:
|
||||
# print(
|
||||
# f'WARNING: Rank{gpc.get_global_rank()} apply invalid state trans: {self.tensors_info[tensor].state} to {tensor_state}'
|
||||
# f'WARNING: Rank{self.process_group.rank()} apply invalid state trans: {self.tensors_info[tensor].state} to {tensor_state}'
|
||||
# )
|
||||
return
|
||||
self.tensors_info[tensor].state = tensor_state
|
||||
|
|
|
@ -2,9 +2,8 @@ import torch
|
|||
from typing import Optional, Dict, Deque, Set, List, Tuple, Iterable
|
||||
from collections import deque
|
||||
|
||||
from colossalai.context import ParallelMode
|
||||
from colossalai.core import global_context as gpc
|
||||
from colossalai.utils import get_current_device
|
||||
from colossalai.tensor import ProcessGroup as ColoProcessGroup
|
||||
from .chunk import Chunk, ChunkFullError, TensorState
|
||||
|
||||
|
||||
|
@ -20,10 +19,13 @@ class ChunkManager:
|
|||
|
||||
def __init__(self,
|
||||
chunk_size: Optional[int],
|
||||
process_group: ColoProcessGroup,
|
||||
enable_distributed_storage: bool = False,
|
||||
init_device: Optional[torch.device] = None) -> None:
|
||||
assert chunk_size is None or chunk_size > 0
|
||||
assert isinstance(process_group, ColoProcessGroup)
|
||||
self.chunk_size = chunk_size
|
||||
self.process_group = process_group
|
||||
self.enable_distributed_storage = enable_distributed_storage
|
||||
self.device = init_device or get_current_device()
|
||||
self.chunk_groups: Dict[str, Deque[Chunk]] = {}
|
||||
|
@ -69,6 +71,7 @@ class ChunkManager:
|
|||
src_rank = self._get_next_src_rank(group_name)
|
||||
chunk = Chunk(chunk_size,
|
||||
src_rank,
|
||||
self.process_group,
|
||||
tensor.dtype,
|
||||
self.device,
|
||||
force_data_on_cuda=self.groups_force_data_on_cuda[group_name])
|
||||
|
@ -89,17 +92,17 @@ class ChunkManager:
|
|||
def _get_next_src_rank(self, group_name: str) -> int:
|
||||
if not self.enable_distributed_storage:
|
||||
# the chunk is owned by the current rank if no distributed storage is enabled
|
||||
return gpc.get_local_rank(ParallelMode.DATA)
|
||||
return self.process_group.dp_local_rank()
|
||||
if self.chunk_size is None:
|
||||
if group_name not in self.rank_load:
|
||||
self.rank_load[group_name] = torch.zeros(gpc.get_world_size(ParallelMode.DATA), dtype=torch.int64)
|
||||
self.rank_load[group_name] = torch.zeros(self.process_group.dp_world_size(), dtype=torch.int64)
|
||||
|
||||
# the process owning the tensor will be the process with the smallest number of elements
|
||||
src_rank = torch.argmin(self.rank_load[group_name]).item()
|
||||
else:
|
||||
# chunk is owned by processes in a round-robin fashion
|
||||
chunk_idx = len(self.chunk_groups[group_name])
|
||||
src_rank = chunk_idx % gpc.get_world_size(ParallelMode.DATA)
|
||||
src_rank = chunk_idx % self.process_group.dp_world_size()
|
||||
return src_rank
|
||||
|
||||
def access_chunk(self, chunk: Chunk) -> None:
|
||||
|
@ -222,7 +225,7 @@ class ChunkManager:
|
|||
self.lazy_release_tensors.clear()
|
||||
|
||||
def __repr__(self) -> str:
|
||||
msg = f'Rank {gpc.get_local_rank(ParallelMode.DATA)}:\n'
|
||||
msg = f'Rank {self.process_group.dp_local_rank()}:\n'
|
||||
msg += 'Total memory: ' + ', '.join([f'{k}={v}B' for k, v in self.total_mem.items()]) + '\n'
|
||||
for group_name, group in self.chunk_groups.items():
|
||||
msg += f'Group {group_name}:\n'
|
||||
|
|
|
@ -118,7 +118,7 @@ class ColoDDP(torch.nn.Module):
|
|||
return empty_grad
|
||||
|
||||
else:
|
||||
#TODO(jiaruifang) fixme
|
||||
# TODO(jiaruifang) fixme
|
||||
self.process_group.set_cpu_groups()
|
||||
dist.all_reduce(grad, group=self.process_group.cpu_dp_process_group())
|
||||
return grad
|
||||
|
@ -191,11 +191,8 @@ class ZeroDDP(ColoDDP):
|
|||
For more details, see the API reference of ``GeminiManager``.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
module: torch.nn.Module,
|
||||
gemini_manager: GeminiManager,
|
||||
process_group: Optional[ColoProcessGroup] = None) -> None:
|
||||
super().__init__(module.half(), process_group=process_group)
|
||||
def __init__(self, module: torch.nn.Module, gemini_manager: GeminiManager) -> None:
|
||||
super().__init__(module.half(), process_group=gemini_manager.chunk_manager.process_group)
|
||||
self.gemini_manager = gemini_manager
|
||||
self.chunk_manager = gemini_manager.chunk_manager
|
||||
self.param_op_hook = ZeROHookV2(gemini_manager)
|
||||
|
|
|
@ -171,3 +171,9 @@ class ProcessGroup:
|
|||
def cpu_tp_process_group(self):
|
||||
assert self._has_cpu_groups
|
||||
return PYTORCHPGDICT_.get(self._tp_rank_list, 'gloo')
|
||||
|
||||
def get_ranks_in_dp(self):
|
||||
return self._dp_rank_list
|
||||
|
||||
def get_ranks_in_tp(self):
|
||||
return self._tp_rank_list
|
||||
|
|
|
@ -33,11 +33,11 @@ def init_ddp(module: torch.nn.Module) -> ColoDDP:
|
|||
|
||||
|
||||
def init_ddpv2(module: torch.nn.Module, use_chunk: bool = False) -> ZeroDDP:
|
||||
chunk_size = ChunkManager.search_chunk_size(module, 64, 2) if use_chunk else None
|
||||
chunk_manager = ChunkManager(chunk_size)
|
||||
gemini_manager = GeminiManager('cuda', chunk_manager)
|
||||
pg = ProcessGroup()
|
||||
return ZeroDDP(module, gemini_manager, pg)
|
||||
chunk_size = ChunkManager.search_chunk_size(module, 64, 2) if use_chunk else None
|
||||
chunk_manager = ChunkManager(chunk_size, pg)
|
||||
gemini_manager = GeminiManager('cuda', chunk_manager)
|
||||
return ZeroDDP(module, gemini_manager)
|
||||
|
||||
|
||||
class Net(torch.nn.Module):
|
||||
|
|
|
@ -28,11 +28,11 @@ def init_ddp(module: torch.nn.Module) -> ColoDDP:
|
|||
|
||||
|
||||
def init_ddpv2(module: torch.nn.Module, use_chunk: bool = False, use_zero: bool = False) -> ZeroDDP:
|
||||
chunk_size = ChunkManager.search_chunk_size(module, 64, 4) if use_chunk else None
|
||||
chunk_manager = ChunkManager(chunk_size, enable_distributed_storage=use_zero)
|
||||
gemini_manager = GeminiManager('cuda', chunk_manager)
|
||||
pg = ProcessGroup()
|
||||
return ZeroDDP(module, gemini_manager, process_group=pg)
|
||||
chunk_size = ChunkManager.search_chunk_size(module, 64, 4) if use_chunk else None
|
||||
chunk_manager = ChunkManager(chunk_size, pg, enable_distributed_storage=use_zero)
|
||||
gemini_manager = GeminiManager('cuda', chunk_manager)
|
||||
return ZeroDDP(module, gemini_manager)
|
||||
|
||||
|
||||
def run_state_dict(ddp_init_func: Callable[[torch.nn.Module], ColoDDP]):
|
||||
|
|
|
@ -7,8 +7,7 @@ from functools import partial
|
|||
from colossalai.gemini import ChunkManager
|
||||
from colossalai.testing import rerun_if_address_is_in_use, parameterize
|
||||
from colossalai.utils import free_port
|
||||
from colossalai.core import global_context as gpc
|
||||
from colossalai.context import ParallelMode
|
||||
from colossalai.tensor import ProcessGroup as ColoProcessGroup
|
||||
|
||||
|
||||
def check_has_params(params: List[torch.Tensor], has_tensors: List[bool]):
|
||||
|
@ -38,12 +37,13 @@ TOTAL_MEM = {True: {True: [512, 512], False: [1024, 1024]}, False: {True: [512,
|
|||
@parameterize('use_chunk', [False, True])
|
||||
@parameterize('use_zero', [False, True])
|
||||
def run_chunk_zero(use_chunk, use_zero):
|
||||
rank = gpc.get_local_rank(ParallelMode.DATA)
|
||||
pg = ColoProcessGroup()
|
||||
rank = pg.rank()
|
||||
if rank == 0:
|
||||
print(f'use_chunk={use_chunk}, use_zero={use_zero}')
|
||||
params = [torch.rand(8, 8) for _ in range(3)]
|
||||
chunk_size = 128 if use_chunk else None
|
||||
chunk_manager = ChunkManager(chunk_size, enable_distributed_storage=use_zero)
|
||||
chunk_manager = ChunkManager(chunk_size, pg, enable_distributed_storage=use_zero)
|
||||
chunk_manager.create_group('param')
|
||||
assert chunk_manager.total_mem['cpu'] == 0
|
||||
assert chunk_manager.total_mem['cuda'] == 0
|
||||
|
|
|
@ -31,8 +31,6 @@ def check_param_equal(model, torch_model, pg: ProcessGroup):
|
|||
def check_grad_equal(model, torch_model, pg: ProcessGroup):
|
||||
for (n, p), (tn, tp) in zip(model.named_parameters(), torch_model.named_parameters()):
|
||||
if p.grad is not None:
|
||||
torch.distributed.barrier()
|
||||
print(torch.distributed.get_rank(), p.grad)
|
||||
assert tensor_shard_equal(tp.grad.to(dtype=p.grad.dtype, device=p.grad.device), p.grad,
|
||||
pg.tp_local_rank(), pg.tp_world_size()), \
|
||||
f'{tp.grad} vs {p.grad}\n{n}:\n\t{tp.grad.shape} vs {p.grad.shape} in {pg.rank()}'
|
||||
|
@ -63,9 +61,9 @@ def init_1d_col_spec(model, pg: ProcessGroup):
|
|||
p.set_tensor_spec(*spec)
|
||||
|
||||
|
||||
@parameterize('use_chunk', [False])
|
||||
@parameterize('use_zero', [False])
|
||||
@parameterize('placement_policy', ['cuda'])
|
||||
@parameterize('use_chunk', [False, True])
|
||||
@parameterize('use_zero', [False, True])
|
||||
@parameterize('placement_policy', ['cuda', 'cpu'])
|
||||
def run_gpt(use_chunk, use_zero, placement_policy, tp_init_spec_func=None):
|
||||
set_seed(42)
|
||||
get_components_func = non_distributed_component_funcs.get_callable('gpt2')
|
||||
|
@ -92,10 +90,11 @@ def run_gpt(use_chunk, use_zero, placement_policy, tp_init_spec_func=None):
|
|||
|
||||
chunk_size = ChunkManager.search_chunk_size(model, 8192, 8) if use_chunk else None
|
||||
chunk_manager = ChunkManager(chunk_size,
|
||||
pg,
|
||||
enable_distributed_storage=use_zero,
|
||||
init_device=GeminiManager.get_default_device(placement_policy))
|
||||
gemini_manager = GeminiManager(placement_policy, chunk_manager)
|
||||
model = ZeroDDP(model, gemini_manager, pg)
|
||||
model = ZeroDDP(model, gemini_manager)
|
||||
optim = HybridAdam(model.parameters(), lr=1e-3)
|
||||
optim = ZeroOptimizer(optim, model, initial_scale=1)
|
||||
|
||||
|
@ -104,7 +103,7 @@ def run_gpt(use_chunk, use_zero, placement_policy, tp_init_spec_func=None):
|
|||
torch_model, torch_optim = convert_to_apex_amp(torch_model, torch_optim, amp_config)
|
||||
torch_model = DDP(torch_model, device_ids=[pg.rank()], process_group=pg.dp_process_group())
|
||||
|
||||
# print(chunk_manager)
|
||||
print(chunk_manager)
|
||||
check_param_equal(model, torch_model, pg)
|
||||
|
||||
model.eval()
|
||||
|
@ -129,13 +128,12 @@ def run_dist(rank, world_size, port):
|
|||
colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
if world_size == 4:
|
||||
run_gpt(tp_init_spec_func=init_1d_col_spec)
|
||||
# run_gpt(tp_init_spec_func=init_1d_row_spec)
|
||||
run_gpt(tp_init_spec_func=init_1d_row_spec)
|
||||
else:
|
||||
run_gpt(tp_init_spec_func=init_1d_col_spec)
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
@pytest.mark.skip("buggy test")
|
||||
@pytest.mark.parametrize('world_size', [1, 4])
|
||||
@rerun_if_address_is_in_use()
|
||||
def test_gpt(world_size):
|
||||
|
|
|
@ -20,13 +20,14 @@ from colossalai.tensor import ProcessGroup
|
|||
|
||||
|
||||
def init_zero(model, use_chunk, use_zero, placement_policy):
|
||||
pg = ProcessGroup()
|
||||
chunk_size = ChunkManager.search_chunk_size(model, 8192, 8) if use_chunk else None
|
||||
chunk_manager = ChunkManager(chunk_size,
|
||||
pg,
|
||||
enable_distributed_storage=use_zero,
|
||||
init_device=GeminiManager.get_default_device(placement_policy))
|
||||
gemini_manager = GeminiManager(placement_policy, chunk_manager)
|
||||
pg = ProcessGroup()
|
||||
return ZeroDDP(model, gemini_manager, pg)
|
||||
return ZeroDDP(model, gemini_manager)
|
||||
|
||||
|
||||
def run_step(model, optim, criterion, data, label):
|
||||
|
|
Loading…
Reference in New Issue