mirror of https://github.com/hpcaitech/ColossalAI
[test] add mixtral modelling test
parent
102b784a10
commit
0b5bbe9ce4
|
@ -0,0 +1,140 @@
|
|||
import os
|
||||
import shutil
|
||||
from copy import deepcopy
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
from transformers.models.mixtral.configuration_mixtral import MixtralConfig
|
||||
from transformers.models.mixtral.modeling_mixtral import MixtralModel
|
||||
|
||||
import colossalai
|
||||
from colossalai.booster.booster import Booster
|
||||
from colossalai.booster.plugin.moe_hybrid_parallel_plugin import MoeHybridParallelPlugin
|
||||
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
|
||||
from colossalai.testing.random import seed_all
|
||||
from tests.test_moe.moe_utils import loose_close
|
||||
from tests.test_moe.test_moe_checkpoint import check_model_equal
|
||||
|
||||
NUM_BATCH = 4
|
||||
NUM_TOK_PER_BATCH, NUM_EXPERTS = 7, 4
|
||||
HIDDEN_SIZE_PER_HEAD = 4
|
||||
NUM_HEADS = 2
|
||||
TOP_K = 1
|
||||
|
||||
|
||||
def split_grad(grad, world_size):
|
||||
with torch.no_grad():
|
||||
grad = grad.clone().detach().flatten()
|
||||
padding_size = (world_size - grad.numel() % world_size) % world_size
|
||||
if padding_size > 0:
|
||||
grad = torch.nn.functional.pad(grad, [0, padding_size])
|
||||
splited_grad = grad.split(grad.numel() // world_size)
|
||||
return splited_grad
|
||||
|
||||
|
||||
@parameterize("stage", [1])
|
||||
@parameterize("ep_size", [1, 2, 4])
|
||||
def run_zero_with_original_model(stage: int, ep_size: int, tp_size: int):
|
||||
dtype = torch.float32
|
||||
|
||||
rank = torch.distributed.get_rank()
|
||||
torch.cuda.set_device(dist.get_rank())
|
||||
|
||||
plugin = MoeHybridParallelPlugin(
|
||||
pp_size=1,
|
||||
tp_size=1,
|
||||
ep_size=ep_size,
|
||||
zero_stage=stage,
|
||||
overlap_communication=False,
|
||||
initial_scale=1,
|
||||
precision="fp32",
|
||||
)
|
||||
booster = Booster(plugin=plugin)
|
||||
|
||||
seed_all(10086)
|
||||
|
||||
config = MixtralConfig(
|
||||
hidden_size=HIDDEN_SIZE_PER_HEAD * NUM_HEADS,
|
||||
intermediate_size=HIDDEN_SIZE_PER_HEAD * NUM_HEADS * 2,
|
||||
num_hidden_layers=2,
|
||||
num_attention_heads=NUM_HEADS,
|
||||
num_key_value_heads=NUM_HEADS,
|
||||
num_local_experts=NUM_EXPERTS,
|
||||
num_experts_per_tok=TOP_K,
|
||||
)
|
||||
|
||||
torch_model = MixtralModel(config).to(dtype).cuda()
|
||||
torch_optimizer = torch.optim.SGD(torch_model.parameters(), lr=1)
|
||||
|
||||
zero_model = deepcopy(torch_model).to(dtype)
|
||||
zero_optimizer = torch.optim.SGD(zero_model.parameters(), lr=1)
|
||||
|
||||
zero_model, zero_optimizer, _, _, _ = booster.boost(zero_model, zero_optimizer)
|
||||
|
||||
# create different input
|
||||
seed_all(1453 + rank)
|
||||
|
||||
torch_model.train()
|
||||
zero_model.train()
|
||||
for _ in range(1):
|
||||
# zero-dp forward
|
||||
input_data = torch.rand(
|
||||
NUM_BATCH, NUM_TOK_PER_BATCH, HIDDEN_SIZE_PER_HEAD * NUM_HEADS, requires_grad=True
|
||||
).cuda()
|
||||
zero_output = zero_model(inputs_embeds=input_data.to(dtype)).last_hidden_state.mean()
|
||||
# zero-dp backward
|
||||
print(zero_output.dtype)
|
||||
zero_optimizer.backward(zero_output)
|
||||
zero_optimizer.step()
|
||||
|
||||
dist.all_reduce(zero_output)
|
||||
|
||||
all_inputs = [torch.empty_like(input_data) for _ in range(dist.get_world_size())]
|
||||
dist.all_gather(all_inputs, input_data)
|
||||
|
||||
torch_output_sum = 0
|
||||
for input_data_ in all_inputs:
|
||||
torch_output = torch_model(inputs_embeds=input_data_.to(dtype)).last_hidden_state.mean()
|
||||
torch_output.backward()
|
||||
torch_output_sum += torch_output.detach()
|
||||
|
||||
# avg dp grads
|
||||
for p in torch_model.parameters():
|
||||
if p.grad is not None:
|
||||
p.grad /= dist.get_world_size()
|
||||
|
||||
loose_close(zero_output, torch_output_sum, dtype=dtype)
|
||||
torch_optimizer.step()
|
||||
|
||||
# use checkpoint to load sharded zero model
|
||||
model_dir = "./test_mixtral"
|
||||
if dist.get_rank() == 0:
|
||||
os.makedirs(model_dir, exist_ok=True)
|
||||
|
||||
dist.barrier()
|
||||
booster.save_model(zero_model, model_dir, shard=True)
|
||||
dist.barrier()
|
||||
|
||||
if dist.get_rank() == 0:
|
||||
saved_model = MixtralModel.from_pretrained(model_dir).cuda()
|
||||
check_model_equal(torch_model, saved_model)
|
||||
shutil.rmtree(model_dir)
|
||||
|
||||
print(f"{dist.get_rank()} test passed")
|
||||
|
||||
|
||||
def run_dist(rank, world_size, port):
|
||||
colossalai.launch(rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
|
||||
run_zero_with_original_model()
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
@pytest.mark.parametrize("world_size", [4])
|
||||
@rerun_if_address_is_in_use()
|
||||
def test_mistral(world_size):
|
||||
spawn(run_dist, world_size)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_mistral(world_size=4)
|
|
@ -2,7 +2,6 @@ import torch
|
|||
import torch.distributed as dist
|
||||
import torch.nn as nn
|
||||
from torch.distributed import ProcessGroup
|
||||
from torch.testing import assert_close
|
||||
|
||||
from colossalai.booster.plugin.low_level_zero_plugin import LowLevelZeroModel
|
||||
from colossalai.legacy.engine.gradient_handler._base_gradient_handler import BaseGradientHandler
|
||||
|
@ -146,6 +145,10 @@ def loose_close(a, b, dtype: torch.dtype = torch.float32, name=""):
|
|||
elif dtype is torch.bfloat16:
|
||||
rtol = 4e-3
|
||||
atol = 4e-3
|
||||
else:
|
||||
assert dtype is torch.float32
|
||||
rtol = 1e-5
|
||||
atol = 1e-5
|
||||
|
||||
a = a.detach().to(dtype)
|
||||
b = b.detach().to(dtype).to(a.device)
|
||||
|
|
Loading…
Reference in New Issue