mirror of https://github.com/hpcaitech/ColossalAI
update utils and fwd bwd
parent
a5580e6289
commit
0a3aae509b
|
@ -149,7 +149,14 @@ class Top1Router(MoeRouter):
|
|||
low=torch.tensor(0.0, device=get_current_device()), high=torch.tensor(1.0, device=get_current_device())
|
||||
).rsample
|
||||
|
||||
def forward(self, inputs: torch.Tensor, use_kernel: bool = False, ep_group: Optional[ProcessGroup] = None) -> Tuple:
|
||||
def forward(
|
||||
self,
|
||||
inputs: torch.Tensor,
|
||||
use_kernel: bool = False,
|
||||
ep_group: Optional[ProcessGroup] = None,
|
||||
use_loss: bool = False,
|
||||
use_norm: bool = False,
|
||||
) -> Tuple:
|
||||
"""
|
||||
Args:
|
||||
inputs (torch.Tensor): The input tensor of shape (batch_size * seq_len, num_experts).
|
||||
|
|
|
@ -2,12 +2,21 @@ import torch
|
|||
import torch.distributed as dist
|
||||
import torch.nn as nn
|
||||
|
||||
from colossalai.booster.plugin.low_level_zero_plugin import LowLevelZeroModel
|
||||
from colossalai.legacy.engine.gradient_handler._base_gradient_handler import BaseGradientHandler
|
||||
from colossalai.legacy.engine.gradient_handler.utils import bucket_allreduce
|
||||
from colossalai.legacy.registry import GRADIENT_HANDLER
|
||||
from colossalai.moe import SparseMLP
|
||||
from colossalai.moe.manager import MOE_MANAGER
|
||||
from colossalai.moe.utils import get_moe_epsize_param_dict
|
||||
from colossalai.tensor.moe_tensor.api import get_ep_group, get_ep_size
|
||||
from tests.test_moe.moe_utils import MoeModel
|
||||
|
||||
|
||||
def delete_moe_info(model):
|
||||
for _, param in model.named_parameters():
|
||||
if hasattr(param, "moe_info"):
|
||||
delattr(param, "moe_info")
|
||||
|
||||
|
||||
class MoeModel(nn.Module):
|
||||
|
@ -85,6 +94,58 @@ def assert_not_equal_in_group(tensor, process_group=None):
|
|||
for i in range(world_size - 1):
|
||||
a = tensor_list[i]
|
||||
b = tensor_list[i + 1]
|
||||
assert not torch.allclose(a, b), \
|
||||
(f"expected tensors on rank {i} and {i + 1} not to be equal "
|
||||
f"but they are, {a} vs {b}")
|
||||
assert not torch.allclose(a, b), (
|
||||
f"expected tensors on rank {i} and {i + 1} not to be equal " f"but they are, {a} vs {b}"
|
||||
)
|
||||
|
||||
|
||||
def run_fwd_bwd(model, data, label, criterion, optimizer, enable_autocast=False):
|
||||
model.train()
|
||||
with torch.cuda.amp.autocast(enabled=enable_autocast):
|
||||
if criterion:
|
||||
y = model(data)
|
||||
loss = criterion(y, label)
|
||||
else:
|
||||
loss = model(data, label)
|
||||
loss = loss.float()
|
||||
|
||||
if isinstance(model, LowLevelZeroModel):
|
||||
optimizer.backward(loss)
|
||||
else:
|
||||
loss.backward()
|
||||
return y
|
||||
|
||||
|
||||
def sync_local_from_ep(local_model: SparseMLP, ep_model: SparseMLP, assert_grad_flag: bool = False) -> None:
|
||||
"""Sync the parameters of tp model from ep model
|
||||
|
||||
Args:
|
||||
local_model (MoeModule)
|
||||
ep_model (MoeModule)
|
||||
"""
|
||||
for (local_name, local_param), (ep_name, ep_param) in zip(
|
||||
local_model.named_parameters(), ep_model.named_parameters()
|
||||
):
|
||||
assert local_name == ep_name, print(f"{local_name} != {ep_name}")
|
||||
if "experts" not in local_name:
|
||||
if assert_grad_flag:
|
||||
assert torch.allclose(local_param, ep_param), f"local_param: {local_param}, ep_param: {ep_param}"
|
||||
assert torch.allclose(local_param.grad, ep_param.grad)
|
||||
else:
|
||||
local_param.data.copy_(ep_param.data)
|
||||
continue
|
||||
|
||||
# gather param from ep model
|
||||
param_list = [torch.zeros_like(ep_param) for _ in range(get_ep_size(ep_param))]
|
||||
dist.all_gather(param_list, ep_param, group=get_ep_group(ep_param))
|
||||
all_param = torch.cat(param_list, dim=0)
|
||||
if assert_grad_flag:
|
||||
grad_list = [torch.zeros_like(ep_param) for _ in range(get_ep_size(ep_param))]
|
||||
dist.all_gather(grad_list, ep_param.grad, group=get_ep_group(ep_param))
|
||||
all_grad = torch.cat(grad_list, dim=0)
|
||||
|
||||
if assert_grad_flag:
|
||||
assert torch.allclose(local_param, all_param)
|
||||
assert torch.allclose(local_param.grad, all_grad)
|
||||
else:
|
||||
local_param.data.copy_(all_param.data)
|
||||
|
|
|
@ -1,85 +1,13 @@
|
|||
import pytest
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
|
||||
import colossalai
|
||||
from colossalai.booster import Booster
|
||||
from colossalai.booster.plugin import LowLevelZeroPlugin
|
||||
from colossalai.booster.plugin.low_level_zero_plugin import LowLevelZeroModel
|
||||
from colossalai.moe import SparseMLP
|
||||
from colossalai.moe.manager import MOE_MANAGER
|
||||
from colossalai.tensor.moe_tensor.api import get_ep_group, get_ep_size
|
||||
from colossalai.testing import rerun_if_address_is_in_use, spawn
|
||||
from colossalai.testing.random import seed_all
|
||||
from tests.test_moe.moe_utils import MoeModel
|
||||
|
||||
|
||||
def split_ddp_grad(grad, world_size):
|
||||
with torch.no_grad():
|
||||
grad = grad.clone().detach().flatten()
|
||||
padding_size = (world_size - grad.numel() % world_size) % world_size
|
||||
if padding_size > 0:
|
||||
grad = torch.nn.functional.pad(grad, [0, padding_size])
|
||||
splited_grad = grad.split(grad.numel() // world_size)
|
||||
return splited_grad
|
||||
|
||||
|
||||
def run_fwd_bwd(model, data, label, criterion, optimizer, enable_autocast=False):
|
||||
model.train()
|
||||
with torch.cuda.amp.autocast(enabled=enable_autocast):
|
||||
if criterion:
|
||||
y = model(data)
|
||||
loss = criterion(y, label)
|
||||
else:
|
||||
loss = model(data, label)
|
||||
loss = loss.float()
|
||||
|
||||
if isinstance(model, LowLevelZeroModel):
|
||||
optimizer.backward(loss)
|
||||
else:
|
||||
loss.backward()
|
||||
return y
|
||||
|
||||
|
||||
def delete_moe_info(model):
|
||||
for name, param in model.named_parameters():
|
||||
if hasattr(param, "moe_info"):
|
||||
delattr(param, "moe_info")
|
||||
|
||||
|
||||
def sync_local_from_ep(local_model: SparseMLP, ep_model: SparseMLP, assert_grad_flag: bool = False) -> None:
|
||||
"""Sync the parameters of tp model from ep model
|
||||
|
||||
Args:
|
||||
local_model (MoeModule)
|
||||
ep_model (MoeModule)
|
||||
"""
|
||||
for (local_name, local_param), (ep_name, ep_param) in zip(
|
||||
local_model.named_parameters(), ep_model.named_parameters()
|
||||
):
|
||||
assert local_name == ep_name, print(f"{local_name} != {ep_name}")
|
||||
if "experts" not in local_name:
|
||||
if assert_grad_flag:
|
||||
assert torch.allclose(local_param, ep_param), f"local_param: {local_param}, ep_param: {ep_param}"
|
||||
assert torch.allclose(local_param.grad, ep_param.grad)
|
||||
else:
|
||||
local_param.data.copy_(ep_param.data)
|
||||
continue
|
||||
|
||||
# gather param from ep model
|
||||
param_list = [torch.zeros_like(ep_param) for _ in range(get_ep_size(ep_param))]
|
||||
dist.all_gather(param_list, ep_param, group=get_ep_group(ep_param))
|
||||
all_param = torch.cat(param_list, dim=0)
|
||||
if assert_grad_flag:
|
||||
grad_list = [torch.zeros_like(ep_param) for _ in range(get_ep_size(ep_param))]
|
||||
dist.all_gather(grad_list, ep_param.grad, group=get_ep_group(ep_param))
|
||||
all_grad = torch.cat(grad_list, dim=0)
|
||||
|
||||
if assert_grad_flag:
|
||||
assert torch.allclose(local_param, all_param)
|
||||
assert torch.allclose(local_param.grad, all_grad)
|
||||
else:
|
||||
local_param.data.copy_(all_param.data)
|
||||
from tests.test_moe.moe_utils import MoeModel, delete_moe_info, run_fwd_bwd, sync_local_from_ep
|
||||
|
||||
|
||||
def run_zero_test(local_rank, stage=1):
|
||||
|
|
Loading…
Reference in New Issue