update utils and fwd bwd

pull/5190/head
Xuanlei Zhao 2023-12-28 18:54:56 +08:00
parent a5580e6289
commit 0a3aae509b
3 changed files with 73 additions and 77 deletions

View File

@ -149,7 +149,14 @@ class Top1Router(MoeRouter):
low=torch.tensor(0.0, device=get_current_device()), high=torch.tensor(1.0, device=get_current_device())
).rsample
def forward(self, inputs: torch.Tensor, use_kernel: bool = False, ep_group: Optional[ProcessGroup] = None) -> Tuple:
def forward(
self,
inputs: torch.Tensor,
use_kernel: bool = False,
ep_group: Optional[ProcessGroup] = None,
use_loss: bool = False,
use_norm: bool = False,
) -> Tuple:
"""
Args:
inputs (torch.Tensor): The input tensor of shape (batch_size * seq_len, num_experts).

View File

@ -2,12 +2,21 @@ import torch
import torch.distributed as dist
import torch.nn as nn
from colossalai.booster.plugin.low_level_zero_plugin import LowLevelZeroModel
from colossalai.legacy.engine.gradient_handler._base_gradient_handler import BaseGradientHandler
from colossalai.legacy.engine.gradient_handler.utils import bucket_allreduce
from colossalai.legacy.registry import GRADIENT_HANDLER
from colossalai.moe import SparseMLP
from colossalai.moe.manager import MOE_MANAGER
from colossalai.moe.utils import get_moe_epsize_param_dict
from colossalai.tensor.moe_tensor.api import get_ep_group, get_ep_size
from tests.test_moe.moe_utils import MoeModel
def delete_moe_info(model):
for _, param in model.named_parameters():
if hasattr(param, "moe_info"):
delattr(param, "moe_info")
class MoeModel(nn.Module):
@ -85,6 +94,58 @@ def assert_not_equal_in_group(tensor, process_group=None):
for i in range(world_size - 1):
a = tensor_list[i]
b = tensor_list[i + 1]
assert not torch.allclose(a, b), \
(f"expected tensors on rank {i} and {i + 1} not to be equal "
f"but they are, {a} vs {b}")
assert not torch.allclose(a, b), (
f"expected tensors on rank {i} and {i + 1} not to be equal " f"but they are, {a} vs {b}"
)
def run_fwd_bwd(model, data, label, criterion, optimizer, enable_autocast=False):
model.train()
with torch.cuda.amp.autocast(enabled=enable_autocast):
if criterion:
y = model(data)
loss = criterion(y, label)
else:
loss = model(data, label)
loss = loss.float()
if isinstance(model, LowLevelZeroModel):
optimizer.backward(loss)
else:
loss.backward()
return y
def sync_local_from_ep(local_model: SparseMLP, ep_model: SparseMLP, assert_grad_flag: bool = False) -> None:
"""Sync the parameters of tp model from ep model
Args:
local_model (MoeModule)
ep_model (MoeModule)
"""
for (local_name, local_param), (ep_name, ep_param) in zip(
local_model.named_parameters(), ep_model.named_parameters()
):
assert local_name == ep_name, print(f"{local_name} != {ep_name}")
if "experts" not in local_name:
if assert_grad_flag:
assert torch.allclose(local_param, ep_param), f"local_param: {local_param}, ep_param: {ep_param}"
assert torch.allclose(local_param.grad, ep_param.grad)
else:
local_param.data.copy_(ep_param.data)
continue
# gather param from ep model
param_list = [torch.zeros_like(ep_param) for _ in range(get_ep_size(ep_param))]
dist.all_gather(param_list, ep_param, group=get_ep_group(ep_param))
all_param = torch.cat(param_list, dim=0)
if assert_grad_flag:
grad_list = [torch.zeros_like(ep_param) for _ in range(get_ep_size(ep_param))]
dist.all_gather(grad_list, ep_param.grad, group=get_ep_group(ep_param))
all_grad = torch.cat(grad_list, dim=0)
if assert_grad_flag:
assert torch.allclose(local_param, all_param)
assert torch.allclose(local_param.grad, all_grad)
else:
local_param.data.copy_(all_param.data)

View File

@ -1,85 +1,13 @@
import pytest
import torch
import torch.distributed as dist
import colossalai
from colossalai.booster import Booster
from colossalai.booster.plugin import LowLevelZeroPlugin
from colossalai.booster.plugin.low_level_zero_plugin import LowLevelZeroModel
from colossalai.moe import SparseMLP
from colossalai.moe.manager import MOE_MANAGER
from colossalai.tensor.moe_tensor.api import get_ep_group, get_ep_size
from colossalai.testing import rerun_if_address_is_in_use, spawn
from colossalai.testing.random import seed_all
from tests.test_moe.moe_utils import MoeModel
def split_ddp_grad(grad, world_size):
with torch.no_grad():
grad = grad.clone().detach().flatten()
padding_size = (world_size - grad.numel() % world_size) % world_size
if padding_size > 0:
grad = torch.nn.functional.pad(grad, [0, padding_size])
splited_grad = grad.split(grad.numel() // world_size)
return splited_grad
def run_fwd_bwd(model, data, label, criterion, optimizer, enable_autocast=False):
model.train()
with torch.cuda.amp.autocast(enabled=enable_autocast):
if criterion:
y = model(data)
loss = criterion(y, label)
else:
loss = model(data, label)
loss = loss.float()
if isinstance(model, LowLevelZeroModel):
optimizer.backward(loss)
else:
loss.backward()
return y
def delete_moe_info(model):
for name, param in model.named_parameters():
if hasattr(param, "moe_info"):
delattr(param, "moe_info")
def sync_local_from_ep(local_model: SparseMLP, ep_model: SparseMLP, assert_grad_flag: bool = False) -> None:
"""Sync the parameters of tp model from ep model
Args:
local_model (MoeModule)
ep_model (MoeModule)
"""
for (local_name, local_param), (ep_name, ep_param) in zip(
local_model.named_parameters(), ep_model.named_parameters()
):
assert local_name == ep_name, print(f"{local_name} != {ep_name}")
if "experts" not in local_name:
if assert_grad_flag:
assert torch.allclose(local_param, ep_param), f"local_param: {local_param}, ep_param: {ep_param}"
assert torch.allclose(local_param.grad, ep_param.grad)
else:
local_param.data.copy_(ep_param.data)
continue
# gather param from ep model
param_list = [torch.zeros_like(ep_param) for _ in range(get_ep_size(ep_param))]
dist.all_gather(param_list, ep_param, group=get_ep_group(ep_param))
all_param = torch.cat(param_list, dim=0)
if assert_grad_flag:
grad_list = [torch.zeros_like(ep_param) for _ in range(get_ep_size(ep_param))]
dist.all_gather(grad_list, ep_param.grad, group=get_ep_group(ep_param))
all_grad = torch.cat(grad_list, dim=0)
if assert_grad_flag:
assert torch.allclose(local_param, all_param)
assert torch.allclose(local_param.grad, all_grad)
else:
local_param.data.copy_(all_param.data)
from tests.test_moe.moe_utils import MoeModel, delete_moe_info, run_fwd_bwd, sync_local_from_ep
def run_zero_test(local_rank, stage=1):