[test] fixed torchrec registration in model zoo (#3177)

* [test] fixed torchrec registration in model zoo

* polish code

* polish code

* polish code
pull/3181/head
Frank Lee 2 years ago committed by GitHub
parent 4e921cfbd6
commit 085e7f4eff
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -11,21 +11,47 @@ from ..registry import ModelAttribute, model_zoo
BATCH = 2
SHAPE = 10
# KeyedTensor
KT = KeyedTensor(keys=["f1", "f2"], length_per_key=[SHAPE, SHAPE], values=torch.rand((BATCH, 2 * SHAPE)))
def gen_kt():
KT = KeyedTensor(keys=["f1", "f2"], length_per_key=[SHAPE, SHAPE], values=torch.rand((BATCH, 2 * SHAPE)))
return KT
# KeyedJaggedTensor
KJT = KeyedJaggedTensor.from_offsets_sync(keys=["f1", "f2"],
values=torch.tensor([1, 2, 3, 4, 5, 6, 7, 8]),
offsets=torch.tensor([0, 2, 4, 6, 8]))
def gen_kjt():
KJT = KeyedJaggedTensor.from_offsets_sync(keys=["f1", "f2"],
values=torch.tensor([1, 2, 3, 4, 5, 6, 7, 8]),
offsets=torch.tensor([0, 2, 4, 6, 8]))
return KJT
data_gen_fn = lambda: dict(features=torch.rand((BATCH, SHAPE)))
interaction_arch_data_gen_fn = lambda: dict(dense_features=torch.rand((BATCH, SHAPE)), sparse_features=KT)
simple_dfm_data_gen_fn = lambda: dict(dense_features=torch.rand((BATCH, SHAPE)), sparse_features=KJT)
def interaction_arch_data_gen_fn():
KT = gen_kt()
return dict(dense_features=torch.rand((BATCH, SHAPE)), sparse_features=KT)
def simple_dfm_data_gen_fn():
KJT = gen_kjt()
return dict(dense_features=torch.rand((BATCH, SHAPE)), sparse_features=KJT)
sparse_arch_data_gen_fn = lambda: dict(features=KJT)
def sparse_arch_data_gen_fn():
KJT = gen_kjt()
return dict(features=KJT)
def output_transform_fn(x):
if isinstance(x, KeyedTensor):
output = dict()
for key in x.keys():
output[key] = x[key]
return output
else:
return dict(output=x)
def output_transform_fn(x):
@ -42,7 +68,27 @@ def get_ebc():
# EmbeddingBagCollection
eb1_config = EmbeddingBagConfig(name="t1", embedding_dim=SHAPE, num_embeddings=SHAPE, feature_names=["f1"])
eb2_config = EmbeddingBagConfig(name="t2", embedding_dim=SHAPE, num_embeddings=SHAPE, feature_names=["f2"])
return EmbeddingBagCollection(tables=[eb1_config, eb2_config])
return EmbeddingBagCollection(tables=[eb1_config, eb2_config], device=torch.device('cpu'))
def sparse_arch_model_fn():
ebc = get_ebc()
return deepfm.SparseArch(ebc)
def simple_deep_fmnn_model_fn():
ebc = get_ebc()
return deepfm.SimpleDeepFMNN(SHAPE, ebc, SHAPE, SHAPE)
def dlrm_model_fn():
ebc = get_ebc()
return dlrm.DLRM(ebc, SHAPE, [SHAPE, SHAPE], [5, 1])
def dlrm_sparsearch_model_fn():
ebc = get_ebc()
return dlrm.SparseArch(ebc)
model_zoo.register(name='deepfm_densearch',
@ -61,17 +107,17 @@ model_zoo.register(name='deepfm_overarch',
output_transform_fn=output_transform_fn)
model_zoo.register(name='deepfm_simpledeepfmnn',
model_fn=partial(deepfm.SimpleDeepFMNN, SHAPE, get_ebc(), SHAPE, SHAPE),
model_fn=simple_deep_fmnn_model_fn,
data_gen_fn=simple_dfm_data_gen_fn,
output_transform_fn=output_transform_fn)
model_zoo.register(name='deepfm_sparsearch',
model_fn=partial(deepfm.SparseArch, get_ebc()),
model_fn=sparse_arch_model_fn,
data_gen_fn=sparse_arch_data_gen_fn,
output_transform_fn=output_transform_fn)
model_zoo.register(name='dlrm',
model_fn=partial(dlrm.DLRM, get_ebc(), SHAPE, [SHAPE, SHAPE], [5, 1]),
model_fn=dlrm_model_fn,
data_gen_fn=simple_dfm_data_gen_fn,
output_transform_fn=output_transform_fn)
@ -91,6 +137,6 @@ model_zoo.register(name='dlrm_overarch',
output_transform_fn=output_transform_fn)
model_zoo.register(name='dlrm_sparsearch',
model_fn=partial(dlrm.SparseArch, get_ebc()),
model_fn=dlrm_sparsearch_model_fn,
data_gen_fn=sparse_arch_data_gen_fn,
output_transform_fn=output_transform_fn)

@ -47,7 +47,6 @@ def trace_and_compare(model_cls, data, output_transform_fn, meta_args=None):
), f'{model.__class__.__name__} has inconsistent outputs, {fx_out} vs {non_fx_out}'
@pytest.mark.skip('unknown error')
def test_torchrec_deepfm_models():
deepfm_models = model_zoo.get_sub_registry('deepfm')
torch.backends.cudnn.deterministic = True

@ -47,7 +47,6 @@ def trace_and_compare(model_cls, data, output_transform_fn, meta_args=None):
), f'{model.__class__.__name__} has inconsistent outputs, {fx_out} vs {non_fx_out}'
@pytest.mark.skip('unknown error')
def test_torchrec_dlrm_models():
torch.backends.cudnn.deterministic = True
dlrm_models = model_zoo.get_sub_registry('dlrm')

Loading…
Cancel
Save